1
|
Chang KJ, Chen JH, Chen KH. The Pathophysiological Mechanism and Clinical Treatment of Polycystic Ovary Syndrome: A Molecular and Cellular Review of the Literature. Int J Mol Sci 2024; 25:9037. [PMID: 39201722 PMCID: PMC11354688 DOI: 10.3390/ijms25169037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 09/03/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent metabolic disorder among women of reproductive age, characterized by hyperandrogenism, ovulatory dysfunction, and polycystic ovaries. The pathogenesis of PCOS involves a complex interplay of genetic and environmental factors, including insulin resistance (IR) and resultant hyperinsulinemia. Insulin receptors, primarily in skeletal muscle, liver, and adipose tissue, activate downstream signaling pathways like PI3K-AKT and MAPK-ERK upon binding. These pathways regulate glucose uptake, storage, and lipid metabolism. Genome-wide association studies (GWASs) have identified several candidate genes related to steroidogenesis and insulin signaling. Environmental factors such as endocrine-disrupting chemicals and lifestyle choices also exacerbate PCOS traits. Other than lifestyle modification and surgical intervention, management strategies for PCOS can be achieved by using pharmacological treatments like antiandrogens, metformin, thiazolidinediones, aromatase inhibitor, and ovulation drugs to improve insulin sensitivity and ovulatory function, as well as combined oral contraceptives with or without cyproterone to resume menstrual regularity. Despite the complex pathophysiology and significant economic burden of PCOS, a comprehensive understanding of its molecular and cellular mechanisms is crucial for developing effective public health policies and treatment strategies. Nevertheless, many unknown aspects of PCOS, including detailed mechanisms of actions, along with the safety and effectiveness for the treatment, warrant further investigation.
Collapse
Affiliation(s)
- Kai-Jung Chang
- Department of Obstetrics and Gynecology, Taipei Tzu-Chi Hospital, The Buddhist Tzu-Chi Medical Foundation, New Taipei City 23142, Taiwan;
| | - Jie-Hong Chen
- Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan;
| | - Kuo-Hu Chen
- Department of Obstetrics and Gynecology, Taipei Tzu-Chi Hospital, The Buddhist Tzu-Chi Medical Foundation, New Taipei City 23142, Taiwan;
- School of Medicine, Tzu-Chi University, Hualien 97004, Taiwan
| |
Collapse
|
2
|
Hossam Abdelmonem B, Abdelaal NM, Anwer EKE, Rashwan AA, Hussein MA, Ahmed YF, Khashana R, Hanna MM, Abdelnaser A. Decoding the Role of CYP450 Enzymes in Metabolism and Disease: A Comprehensive Review. Biomedicines 2024; 12:1467. [PMID: 39062040 PMCID: PMC11275228 DOI: 10.3390/biomedicines12071467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
Cytochrome P450 (CYP450) is a group of enzymes that play an essential role in Phase I metabolism, with 57 functional genes classified into 18 families in the human genome, of which the CYP1, CYP2, and CYP3 families are prominent. Beyond drug metabolism, CYP enzymes metabolize endogenous compounds such as lipids, proteins, and hormones to maintain physiological homeostasis. Thus, dysregulation of CYP450 enzymes can lead to different endocrine disorders. Moreover, CYP450 enzymes significantly contribute to fatty acid metabolism, cholesterol synthesis, and bile acid biosynthesis, impacting cellular physiology and disease pathogenesis. Their diverse functions emphasize their therapeutic potential in managing hypercholesterolemia and neurodegenerative diseases. Additionally, CYP450 enzymes are implicated in the onset and development of illnesses such as cancer, influencing chemotherapy outcomes. Assessment of CYP450 enzyme expression and activity aids in evaluating liver health state and differentiating between liver diseases, guiding therapeutic decisions, and optimizing drug efficacy. Understanding the roles of CYP450 enzymes and the clinical effect of their genetic polymorphisms is crucial for developing personalized therapeutic strategies and enhancing drug responses in diverse patient populations.
Collapse
Affiliation(s)
- Basma Hossam Abdelmonem
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences & Arts (MSA), Giza 12451, Egypt
| | - Noha M. Abdelaal
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (N.M.A.); (E.K.E.A.); (A.A.R.)
| | - Eman K. E. Anwer
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (N.M.A.); (E.K.E.A.); (A.A.R.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo 4411601, Egypt
| | - Alaa A. Rashwan
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (N.M.A.); (E.K.E.A.); (A.A.R.)
| | - Mohamed Ali Hussein
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| | - Yasmin F. Ahmed
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| | - Rana Khashana
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| | - Mireille M. Hanna
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| | - Anwar Abdelnaser
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| |
Collapse
|
3
|
Hegde P, Shetty SS, Shetty PK, Manjeera L, Shetty DP, Kumari S. Delineating the role of single-nucleotide polymorphism of CYP19 gene on aromatase activity in South Indian women with polycystic ovary syndrome. J Genet Eng Biotechnol 2023; 21:87. [PMID: 37603197 PMCID: PMC10441965 DOI: 10.1186/s43141-023-00540-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/31/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND Polycystic ovary syndrome is a common multifactorial endocrinopathy disorder affecting 5-15% of reproductive women worldwide. The CYP19 gene encodes key enzyme aromatase involved in androgen-to-estrogen conversion which plays a crucial role in the pathophysiology of the syndrome. Very few studies have been done in the Indian population; hence, we investigated whether CYP19 gene rs2414096 SNP is associated with PCOS and hyperandrogenism susceptibility in Karnataka women. METHODS Three-hundred subjects including 150 PCOS and 150 age-matched controls were involved in the current case-control study. Sex hormones and biochemical estimation were performed by ELISA. Sanger sequencing and PCR-RFLP were used to genotype the SNP rs2414096. Genotypic-phenotypic association was studied. Statistical analysis was performed. RESULTS The GG genotype was more common in patients, while the GA genotype was more common in control women. LH/FSH was significantly increased in GG genotype in PCOS when compared with AA and GA genotypes. Variations of CYP19 rs2414096 were not statistically significant with PCOS. CONCLUSION CYP19 rs2414096 polymorphism was not associated with PCOS; however, the homozygous wild GG genotype may exhibit reduced aromatase activity with subsequent hyperandrogenism implicating endocrine abnormalities.
Collapse
Affiliation(s)
- Pravesh Hegde
- Department of Biochemistry, KS Hegde Medical Academy, NITTE (Deemed to Be University), Deralakatte, Mangalore, 575018, Karnataka, India
| | - Shilpa S Shetty
- KS Hegde Medical Academy, NITTE (Deemed to Be University), Karnataka, 575018, Deralakatte, Mangalore, India
| | - Prasanna Kumar Shetty
- Department of Obstetrics and Gynecology, KS Hegde Medical Academy, NITTE (Deemed to Be University), Deralakatte, Mangalore, 575018, Karnataka, India
| | - Lakshmi Manjeera
- Department of Obstetrics and Gynecology, KS Hegde Medical Academy, NITTE (Deemed to Be University), Deralakatte, Mangalore, 575018, Karnataka, India
| | - D Prashanth Shetty
- KSHEMA Centre for Genetic Services, KS Hegde Medical Academy, NITTE (Deemed to Be University), Deralakatte, Mangalore, 575018, Karnataka, India
| | - Suchetha Kumari
- Department of Biochemistry, KS Hegde Medical Academy, NITTE (Deemed to Be University), Deralakatte, Mangalore, 575018, Karnataka, India.
| |
Collapse
|
4
|
Wang H, Feng X, Wang T, Pan J, Zheng Z, Su Y, Weng H, Zhang L, Chen L, Zhou L, Zheng L. Role and mechanism of the p-JAK2/p-STAT3 signaling pathway in follicular development in PCOS rats. Gen Comp Endocrinol 2023; 330:114138. [PMID: 36202220 DOI: 10.1016/j.ygcen.2022.114138] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/19/2022] [Accepted: 10/01/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To identify the association between the phosphorylated Janus kinase 2/phosphorylated signal transducer and activator of transcription (p-JAK2/p-STAT3) signaling pathway and follicular development in polycystic ovary syndrome (PCOS) rats, and explore the underlying mechanism. To evaluate the role of exogenous JAK2 inhibitor AG490 in the model and the associations among luteinizing hormone/choriogonadotropin receptor (LHCGR), follicle-stimulating hormone receptor (FSHR), cytochrome P450 17α (CYP17a), cytochrome P450 19 (CYP19), and PCOS. RESULTS Rat models of PCOS was established. PCOS rats were intraperitoneally treated with double-distilled water (ddH2O)/DMSO/AG490. The rate of ovarian morphological recovery in the AG490 group was significantly higher compared with the DMSO group (83.3 % vs 9.1 %, X2 = 12.68, P < 0.001). Moreover, the short in the time the estrous cycle was resumed in the AG490 group (hazard ratio = 16.32, P < 0.001) compared with the DMSO group. Compared with the controls, p-JAK2, p-STAT3, LHCGR, and CYP17a expression levels were increased whereas that of FSHR and CYP19 were decreased in the ovaries of PCOS rats. However, an opposite trend was observed after treatment with AG490. Software prediction revealed that the p-STAT3 bound to the promoter regions of LHCGR, FSHR, CYP17a, and CYP19 genes. This finding was confirmed by results of correlation analysis (R = 0.834, -0.836, 0.875 and -0.712, respectively, all P < 0.001). CONCLUSION This study demonstrated that the p-JAK2/p-STAT3 signaling pathway was involved in follicular development in PCOS rats by upregulating LHCGR and CYP17a expression, and downregulating that of FSHR and CYP19. AG490 treatment exerted beneficial effects. LHCGR, FSHR, CYP17a, and CYP19 are candidate genes associated with follicular development in PCOS rats.
Collapse
Affiliation(s)
- Huilan Wang
- Department of Ob &Gyn, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Xiushan Feng
- Department of Ob &Gyn, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Tongfei Wang
- Department of Ob &Gyn, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Jianrong Pan
- Department of Ob &Gyn, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Zhiqun Zheng
- Department of Ob &Gyn, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Yanhua Su
- Department of Ob &Gyn, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Huixi Weng
- Department of Ob &Gyn, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Liping Zhang
- Department of Ob &Gyn, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Lin Chen
- Department of Ob &Gyn, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Ling Zhou
- Department of Ob &Gyn, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Luo Zheng
- Department of Ob &Gyn, Fujian Medical University Union Hospital, Fuzhou, Fujian, China.
| |
Collapse
|
5
|
Bhattacharya K, Saha I, Sen D, Bose C, Chaudhuri GR, Dutta S, Sengupta P, Bhattacharya S, Barman SS, Syamal AK. Role of anti-Mullerian hormone in polycystic ovary syndrome. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2022. [DOI: 10.1186/s43043-022-00123-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractPolycystic ovary syndrome (PCOS) is the most common gynecological endocrine disorders affecting up to 10% of all females in their reproductive age, and its cause of onset is still elusive. A spectrum of recent research reflected diverse associations between increased plasma level of anti-Mullerian hormone (AMH) and different clinical features of PCOS. Since AMH levels reflect the pool of growing follicles that potentially can ovulate, it can be stated that serum AMH levels can be used to assess the “functional ovarian reserve,” rather mentioning it as the “ovarian reserve.” AMH also appears to be a premier endocrine parameter for the assessment of atrophied ovarian follicular pool in response to age of individuals. AMH hinders the follicular development as well as the follicular recruitment and ultimately resulting in follicular arrest which is the key pathophysiologic condition for the onset of PCOS. Furthermore, FSH-induced aromatase activity remains inhibited by AMH that aids emergence of other associated clinical signs of PCOS, such as excess androgen, followed by insulin resistance among the PCOS individuals. Given the versatile association of AMH with PCOS and scarcity in literature explaining the underling mechanisms how AMH relates with PCOS, this review article will discuss the roles of AMH in the pathogenesis of PCOS which may introduce a new era in treatment approach of PCOS.
Collapse
|
6
|
Scarfò G, Daniele S, Fusi J, Gesi M, Martini C, Franzoni F, Cela V, Artini PG. Metabolic and Molecular Mechanisms of Diet and Physical Exercise in the Management of Polycystic Ovarian Syndrome. Biomedicines 2022; 10:biomedicines10061305. [PMID: 35740328 PMCID: PMC9219791 DOI: 10.3390/biomedicines10061305] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 01/27/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is an endocrine systemic disorder mainly characterized by a hormonal and metabolic disbalance that leads to oligo/anovulation, hyperandrogenism and the formation of ovarian cysts. Despite the progress that has been reached in its diagnosis and management, little is known about the molecular mechanisms and signaling pathways underlying the pathogenic mechanisms. In this sense, recent research has suggested that the influence of multiple factors, including age, environment, lifestyle and the disease state environment can change the clinical presentation of PCOS via epigenetic modifications. Variants in the genes encoding for proteins involved in steroidogenesis and glucose homeostasis play a crucial role in the development of the disease. Other genes involved in inflammation and cell proliferation seem to undergo an epigenetic control. Moreover, lifestyle factors influence the PCOS course and prognosis, including diet and physical activity, which are fundamental in reducing oxidative stress, inflammation and in improving metabolic and hormonal parameters. In the present review, literature evidence on molecular and epigenetic mechanisms related to PCOS etiology will be discussed, with a particular attention on the positive influence of diet and physical activity as nonpharmacological ways of intervention in the management of the disease.
Collapse
Affiliation(s)
- Giorgia Scarfò
- Division of General Medicine, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (G.S.); (J.F.); (F.F.)
| | - Simona Daniele
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy;
- Correspondence: (S.D.); (P.G.A.); Tel.: +39-050-2219608 (S.D.); +39-050-554104 (P.G.A.)
| | - Jonathan Fusi
- Division of General Medicine, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (G.S.); (J.F.); (F.F.)
| | - Marco Gesi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy;
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy;
| | - Ferdinando Franzoni
- Division of General Medicine, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (G.S.); (J.F.); (F.F.)
| | - Vito Cela
- Division of Gynecology and Obstetrics, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy;
| | - Paolo Giovanni Artini
- Division of Gynecology and Obstetrics, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy;
- Correspondence: (S.D.); (P.G.A.); Tel.: +39-050-2219608 (S.D.); +39-050-554104 (P.G.A.)
| |
Collapse
|
7
|
Abruzzese GA, Silva AF, Velazquez ME, Ferrer MJ, Motta AB. Hyperandrogenism and Polycystic ovary syndrome: Effects in pregnancy and offspring development. WIREs Mech Dis 2022; 14:e1558. [PMID: 35475329 DOI: 10.1002/wsbm.1558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/18/2022] [Accepted: 04/01/2022] [Indexed: 11/10/2022]
Abstract
Polycystic ovary syndrome (PCOS) is one of the major endocrine disorders affecting women of reproductive age. Its etiology remains unclear. It is suggested that environmental factors, and particularly the intrauterine environment, play key roles in PCOS development. Besides the role of androgens in PCOS pathogenesis, exposure to endocrine disruptors, as is Bisphenol A, could also contribute to its development. Although PCOS is considered one of the leading causes of ovarian infertility, many PCOS patients can get pregnant. Some of them by natural conception and others by assisted reproductive technique treatments. As hyperandrogenism (one of PCOS main features) affects ovarian and uterine functions, PCOS women, despite reaching pregnancy, could present high-risk pregnancies, including implantation failure, an increased risk of gestational diabetes, preeclampsia, and preterm birth. Moreover, hyperandrogenism may also be maintained in these women during pregnancy. Therefore, as an altered uterine milieu, including hormonal imbalance, could affect the developing organisms, monitoring these patients throughout pregnancy and their offspring development is highly relevant. The present review focuses on the impact of androgenism and PCOS on fertility issues and pregnancy-related outcomes and offspring development. The evidence suggests that the increased risk of pregnancy complications and adverse offspring outcomes of PCOS women would be due to the factors involved in the syndrome pathogenesis and the related co-morbidities. A better understanding of the involved mechanisms is still needed and could contribute to a better management of these women and their offspring. This article is categorized under: Reproductive System Diseases > Molecular and Cellular Physiology Reproductive System Diseases > Environmental Factors.
Collapse
Affiliation(s)
- Giselle A Abruzzese
- Laboratorio de Fisiopatología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Aimé F Silva
- Laboratorio de Fisiopatología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariela E Velazquez
- Laboratorio de Fisiopatología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maria-José Ferrer
- Laboratorio de Fisiopatología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alicia B Motta
- Laboratorio de Fisiopatología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
8
|
Quantitative Changes in White Blood Cells: Correlation with the Hallmarks of Polycystic Ovary Syndrome. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58040535. [PMID: 35454373 PMCID: PMC9031855 DOI: 10.3390/medicina58040535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/03/2022] [Accepted: 04/08/2022] [Indexed: 11/17/2022]
Abstract
Background and Objectives: In women of reproductive age, leukocytosis is a risk factor that bridges low-grade chronic inflammation (metabolic inflammation), metabolic changes, and polycystic ovary syndrome (PCOS) and is a potential early predictor of PCOS. This study aims to explore the predictive role of quantitative changes in white blood cells (WBCs) and neutrophils in PCOS-associated metabolic changes. Materials and Methods: A total number of 176 blood samples were obtained from age-matched women of the reproductive period, comprising 88 PCOS cases and 88 healthy controls. Hematological, metabolic, and anthropometric indices and ultrasonic assessment were recorded. Results: Elevated levels of luteinizing hormone, testosterone, and lipid parameters except HDL-C levels, and the prevalence of metabolic syndrome in PCOS were statistically significant (p < 0.001). The neutrophil count and neutrophil−lymphocyte ratio (NLR) in PCOS patients were significantly higher (p < 0.001) than their counterparts. The predictive ability of the neutrophil count and neutrophil−lymphocyte ratio (NLR) for PCOS, and possibly its associating subclinical inflammation at optimum cut-off values for the neutrophil count and NLR of >46.62% (sensitivity 94.32% and specificity 74.42%) and >1.23 (sensitivity 71.59% and specificity 100%), respectively. With regard to the areas under the curve (AUC) and Youden indices, they constituted 0.922 and 0.697 for neutrophil count and 0.926 and 0.716 for NLR, respectively. The comparative ROC z-statistic value was 2.222 and a p = 0.026. The multiple linear regression analysis revealed no significant influence for hormonal and metabolic independent variables on the neutrophil count in PCOS cases, but, as can be expected, revealed a significant negative relationship with the other components of WBCs. Conclusion: In conclusion, relative neutrophilia and elevated NLR are potential cost-effective, sensitive, and specific predictors of PCOS that may also shed light on the mechanism of chronic low-grade inflammation that is characteristic of the disease.
Collapse
|