1
|
Jung N, Schreiner J, Baur F, Vogel-Kindgen S, Windbergs M. Predicting nanocarrier permeation across the human intestine in vitro: model matters. Biomater Sci 2024; 12:5775-5788. [PMID: 39402906 DOI: 10.1039/d4bm01092b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
For clinical translation of oral nanocarriers, simulation of the intestinal microenvironment during in vitro testing is crucial to evaluate interactions with the intestinal mucosa. However, studies are often conducted using simplistic cell culture models, overlooking key physiological factors, and potentially leading to an overestimation of nanocarrier permeation. In this study, we systematically investigate different tissue models of the human intestine under static cultivation and dynamic flow conditions and analyze the impact of altered tissue characteristics on nanocarrier permeation. Our results reveal that the selection of cell types as well as the respective culture condition have a notable impact on the physiological characteristics of the resulting tissues. Tissue layer thickness, mucus secretion, and barrier impairment, all increase with increasing amounts of goblet cells and the application of dynamic flow conditions. Permeation studies with poly(lactic-co-glycolic acid) (PLGA) nanocarriers with and without polyethylene glycol (PEG) coating elucidate that the amount of mucus present in the respective model is the limiting factor for the permeation of PLGA nanocarriers, while tissue topography presents the key factor influencing PEG-PLGA nanocarrier permeation. Furthermore, both nanocarriers exhibit diametrically opposite permeation kinetics compared to soluble compounds. In summary, these findings reveal the critical role of the implemented test systems on permeation assessment and emphasize that, in the context of preclinical nanocarrier testing, the choice of in vitro model matters.
Collapse
Affiliation(s)
- Nathalie Jung
- Institute of Pharmaceutical Technology, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany.
| | - Jonas Schreiner
- Institute of Pharmaceutical Technology, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany.
| | - Florentin Baur
- Institute of Pharmaceutical Technology, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany.
| | - Sarah Vogel-Kindgen
- Institute of Pharmaceutical Technology, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany.
| | - Maike Windbergs
- Institute of Pharmaceutical Technology, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
2
|
Walraven T, Busch M, Wang J, Donkers JM, Duijvestein M, van de Steeg E, Kramer NI, Bouwmeester H. Elevated risk of adverse effects from foodborne contaminants and drugs in inflammatory bowel disease: a review. Arch Toxicol 2024; 98:3519-3541. [PMID: 39249550 PMCID: PMC11489187 DOI: 10.1007/s00204-024-03844-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024]
Abstract
The global burden of Inflammatory bowel disease (IBD) has been rising over the last decades. IBD is an intestinal disorder with a complex and largely unknown etiology. The disease is characterized by a chronically inflamed gastrointestinal tract, with intermittent phases of exacerbation and remission. This compromised intestinal barrier can contribute to, enhance, or even enable the toxicity of drugs, food-borne chemicals and particulate matter. This review discusses whether the rising prevalence of IBD in our society warrants the consideration of IBD patients as a specific population group in toxicological safety assessment. Various in vivo, ex vivo and in vitro models are discussed that can simulate hallmarks of IBD and may be used to study the effects of prevalent intestinal inflammation on the hazards of these various toxicants. In conclusion, risk assessments based on healthy individuals may not sufficiently cover IBD patient safety and it is suggested to consider this susceptible subgroup of the population in future toxicological assessments.
Collapse
Affiliation(s)
- Tom Walraven
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands.
| | - Mathias Busch
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands
| | - Jingxuan Wang
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands
| | - Joanne M Donkers
- Department of Metabolic Health Research, Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Marjolijn Duijvestein
- Department of Gastroenterology and Hepatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Evita van de Steeg
- Department of Metabolic Health Research, Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Nynke I Kramer
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands
| | - Hans Bouwmeester
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
3
|
Samim Sardar M, Kashinath KP, Kumari M, Sah SK, Alam K, Gupta U, Ravichandiran V, Roy S, Kaity S. Rebamipide nanocrystal with improved physicomechanical properties and its assessment through bio-mimicking 3D intestinal permeability model. NANOSCALE 2024; 16:19786-19805. [PMID: 39370903 DOI: 10.1039/d4nr03137g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
This study investigated the formulation and characterization of rebamipide nanocrystals (REB-NCs) to enhance the solubility and permeability of rebamipide, an anti-ulcer medication known for its low aqueous solubility and permeability, classified as BCS class IV. Employing high-pressure homogenization and wet milling techniques, we successfully achieved nanonization of rebamipide, resulting in stable nanosuspensions that were subsequently freeze-dried to produce REB-NCs with an average particle size of 223 nm. Comprehensive characterization techniques, including Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and differential scanning calorimetry (DSC) confirmed the crystalline nature of the nanocrystals and their compatibility with the selected excipients. The saturation solubility study revealed a remarkable three-fold enhancement in PBS pH 7.4 compared to rebamipide API, indicating the effectiveness of the nanocrystal formulation in improving drug solubility. Furthermore, 3D in-vitro permeability assessments conducted on Caco-2 cell monolayers demonstrated an noticeable increase in the permeability of REB-NCs relative to the pure active pharmaceutical ingredient (API), highlighting the promise of this formulation to enhance drug absorption. The dissolution profile of the nanocrystal tablets exhibited immediate release characteristics, significantly outperforming conventional formulations in terms of the dissolution rate. This research underscores the potential of nanomilling as a scalable, environment-friendly, and less toxic approach to significantly enhance the bioavailability of rebamipide. By addressing the challenges associated with the solubility and permeability of poorly water-soluble drugs, our outcome offers insightful information into developing efficient nanomedicine strategies for enhancing therapeutic outcomes.
Collapse
Affiliation(s)
- Md Samim Sardar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, West Bengal 700054, India.
| | - Kardile Punam Kashinath
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, West Bengal 700054, India.
| | - Mamta Kumari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, West Bengal 700054, India.
| | - Sunil Kumar Sah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, West Bengal 700054, India.
| | - Kamare Alam
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal 700054, India.
| | - Ujjwal Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, West Bengal 700054, India.
| | - Velayutham Ravichandiran
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal 700054, India
| | - Subhadeep Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal 700054, India.
| | - Santanu Kaity
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, West Bengal 700054, India.
| |
Collapse
|
4
|
Navarro M, Coba A, Muller M, Roura E, Cozzolino D. Mid infrared spectroscopy combined with chemometrics as tool to monitor the impact of heat stress and dietary interventions in lactating sows. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024:10.1007/s00484-024-02792-5. [PMID: 39455442 DOI: 10.1007/s00484-024-02792-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/25/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024]
Abstract
Heat stress in hyper-prolific lactating sows is recognised as a factor reducing feed intake, milk production, and welfare, with significant losses in farm productivity. Individual capacities for body thermoregulation during environmental hyperthermia determine the adaptation of the animal during long and recurrent events. This study aimed to evaluate the ability of attenuated total reflectance (ATR) mid infrared (MIR) spectroscopy as a high-throughput method to identify markers of stress in plasma and milk collected from lactating sows under heat stress conditions fed with two levels of protein in the diet defined as low (16%) and standard (20%). The MIR spectra were analysed using linear discriminant analysis (LDA) and principal component analysis and validated using cross-validation. The results obtained indicated that MIR spectroscopy, in combination with chemometrics, was able to identify changes in the spectra associated with heat stress in wavenumbers corresponding with amide groups (proteins) (highest loadings observed in the regions between1065 and 1635 cm-1), lipids and unsaturated fatty acids (regions between 1746 and 3063 cm-1), lipo-polysaccharides (in 1247 cm-1) and carbohydrates (around the region1050 cm-1). These results also indicated that the information provided by these wavenumbers can be used as metabolic markers of the adaptation of the sows to hyperthermia. It was concluded that MIR spectroscopy is a rapid and inexpensive tool capable of detecting and evaluating the main biochemical changes of hyperthermia on lactating sows, facilitating the development of palliative management strategies such as dietary manipulations.
Collapse
Affiliation(s)
- M Navarro
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD, 4072, Australia
- Centre for Animal Science, QAAFI, The Univeristy of Queensland, Brisbane, QLD, 4072, Australia
| | - A Coba
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD, 4072, Australia
- Centre for Animal Science, QAAFI, The Univeristy of Queensland, Brisbane, QLD, 4072, Australia
| | - M Muller
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD, 4072, Australia
- Centre for Animal Science, QAAFI, The Univeristy of Queensland, Brisbane, QLD, 4072, Australia
| | - E Roura
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD, 4072, Australia
- Centre for Animal Science, QAAFI, The Univeristy of Queensland, Brisbane, QLD, 4072, Australia
| | - D Cozzolino
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
5
|
Sah SK, Alam K, Kumari M, Malootty R, Nath S, Ravichandiran V, Roy S, Kaity S. A 3D in-vitro biomimicking Caco-2 intestinal permeability model-based assessment of physically modified telmisartan towards an alkalizer-free formulation development. Eur J Pharm Biopharm 2024; 203:114480. [PMID: 39222674 DOI: 10.1016/j.ejpb.2024.114480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Efficient telmisartan delivery for hypertension management requires the incorporation of meglumine and/or sodium hydroxide as an alkalizer in the formulation. Long-term use of powerful alkalis with formulation as part of chronic therapy can cause metabolic alkalosis, ulcers, diarrhea, and body pain. Here, we aimed to design a telmisartan formulation without alkalizers. Telmisartan properties were tailor-made by microfluidizer-based physical modification. After microfluidization, telmisartan nanosuspension was lyophilized to obtain telmisartan premix powder. The optimized telmisartan nanosuspension had an average particle size of 579.85 ± 32.14 nm. The lyophilized premix was characterized by FT-IR, DSC, and PXRD analysis to ensure its physicochemical characteristics. The solubility analysis of premix showed 2.2 times, 2.3 times, and 6 times solubility improvement in 0.1 N HCl, phosphate buffer pH 7.5, and pH 6.8 compared to pure telmisartan. A 3D in-vitro Caco-2 model was developed to compare apparent permeability of API and powder premix. It showed that the powder premix was more permeable than pure API. The tablet formulation prepared from the telmisartan premix showed a dissolution profile comparable to that of the marketed formulation. The technique present herein can be used as a platform technology for solubility and permeability improvement of similar classes of molecules.
Collapse
Affiliation(s)
- Sunil Kumar Sah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal 700054, India
| | - Kamare Alam
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal 700054, India
| | - Mamta Kumari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal 700054, India
| | - R Malootty
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal 700054, India
| | - Subham Nath
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal 700054, India
| | - Velayutham Ravichandiran
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal 700054, India
| | - Subhadeep Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal 700054, India.
| | - Santanu Kaity
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal 700054, India.
| |
Collapse
|
6
|
Xu Y, Xia Y, Zhao J, Yu H, Zhang Y, Mao D. p38MAPK/HSPB1 is involved in the regulatory effects of selenomethionine on the apoptosis, viability and testosterone secretion of sheep Leydig cells exposed to heat. J Biochem Mol Toxicol 2024; 38:e23826. [PMID: 39188067 DOI: 10.1002/jbt.23826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/03/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
Testosterone derived from testicular Leydig cells (LCs) is important for male sheep, and the testis is susceptible to external temperature. The present study aimed to explore the alleviating effect of selenomethionine (Se-Met) on heat-induced injury in Hu sheep LCs. Isolated LCs were exposed to heat (41.5°C, heat exposure, HE) or not (37°C, nonheat exposure, NE), and cells in NE and HE were treated with 0 (C) or 8 μmol/L (S) Se-Met for 6 h. Cell viability, testosterone level, and the expression of GPX1, HSD3B, apoptosis-related genes and p38 mitogen-activated protein kinase (p38MAPK)/heat shock protein beta-1 (HSPB1) pathway were examined. The results showed that Se-Met increased GPX1 expression (NE-S vs. NE-C: 2.28-fold; HE-S vs. HE-C: 2.36-fold, p < 0.05) and alleviated heat-induced decrease in cell viability (HE-S vs. HE-C: 1.41-fold; HE-C vs. NE-C: 0.61-fold, p < 0.01), although the viability was still lower than that in the NE-C cells (HE-S vs. NE-C: 0.85-fold) and Se-Met-treated cells (HE-S vs. NE-S: 0.81-fold). Se-Met relieved heat-induced decrease in testosterone level (HE-S vs. HE-C: 1.84-fold, p < 0.05) and HSD3B expression (HE-S vs. HE-C: 1.67-fold, p < 0.05). Se-Met alleviated heat-induced increase in Bcl2-associated protein X (BAX) expression (HE-C vs. HE-S: 2.4-fold, p < 0.05), and decrease in B-cell lymphoma-2 (BCL2) expression (HE-S vs. HE-C: 2.62-fold, p < 0.05), resulting in increased BCL2/BAX ratio in the HE-S cells (HE-S vs. HE-C: 5.24-fold, p < 0.05). Furthermore, Se-Met alleviated heat-induced activation of p-p38MAPK/p38MAPK (HE-C vs. HE-S: 1.79-fold, p < 0.05) and p-HSPB1/HSPB1 (HE-C vs. HE-S: 2.72-fold, p < 0.05). In conclusion, p38MAPK/HSPB1 might be involved in Se-Met-mediated alleviation of heat-induced cell apoptosis, cell viability and testosterone secretion impairments in sheep LCs.
Collapse
Affiliation(s)
- Yinying Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yuting Xia
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jie Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Hao Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yanli Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Dagan Mao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
7
|
Nagasawa M, Onuki M, Imoto N, Tanaka K, Tanaka R, Kawada M, Imato K, Iitani K, Tsuchido Y, Takeda N. Fabrication of 3D engineered intestinal tissue producing abundant mucus by air-liquid interface culture using paper-based dual-layer scaffold. Biofabrication 2024; 16:035029. [PMID: 38788705 DOI: 10.1088/1758-5090/ad504b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 05/24/2024] [Indexed: 05/26/2024]
Abstract
Fabrication of engineered intestinal tissues with the structures and functions as humans is crucial and promising as the tools for developing drugs and functional foods. The aim of this study is to fabricate an engineered intestinal tissue from Caco-2 cells by air-liquid interface culture using a paper-based dual-layer scaffold and analyze its structure and functions. Just by simply placing on a folded paper soaked in the medium, the electrospun gelatin microfiber mesh as the upper cell adhesion layer of the dual-layer scaffold was exposed to the air, while the lower paper layer worked to preserve and supply the cell culture medium to achieve stable culture over several weeks. Unlike the flat tissue produced using the conventional commercial cultureware, Transwell, the engineered intestinal tissue fabricated in this study formed three-dimensional villous architectures. Microvilli and tight junction structures characteristic of epithelial tissue were also formed at the apical side. Furthermore, compared to the tissue prepared by Transwell, mucus production was significantly larger, and the enzymatic activities of drug metabolism and digestion were almost equivalent. In conclusion, the air-liquid interface culture using the paper-based dual-layer scaffold developed in this study was simple but effective in fabricating the engineered intestinal tissue with superior structures and functions.
Collapse
Affiliation(s)
- Mari Nagasawa
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), Tokyo, Japan
| | - Mai Onuki
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), Tokyo, Japan
| | - Natsuki Imoto
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), Tokyo, Japan
| | - Kazuomi Tanaka
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), Tokyo, Japan
| | - Ryo Tanaka
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), Tokyo, Japan
| | - Moeka Kawada
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), Tokyo, Japan
| | - Keiichi Imato
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), Tokyo, Japan
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima, Japan
| | - Kenta Iitani
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), Tokyo, Japan
- Department of Biomedical Devices and Instrumentation, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yuji Tsuchido
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), Tokyo, Japan
| | - Naoya Takeda
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), Tokyo, Japan
| |
Collapse
|
8
|
Álvarez-Herms J, Odriozola A. Microbiome and physical activity. ADVANCES IN GENETICS 2024; 111:409-450. [PMID: 38908903 DOI: 10.1016/bs.adgen.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Regular physical activity promotes health benefits and contributes to develop the individual biological potential. Chronical physical activity performed at moderate and high-intensity is the intensity more favorable to produce health development in athletes and improve the gut microbiota balance. The athletic microbiome is characterized by increased microbial diversity and abundance as well as greater phenotypic versatility. In addition, physical activity and microbiota composition have bidirectional effects, with regular physical activity improving microbial composition and microbial composition enhancing physical performance. The improvement of physical performance by a healthy microbiota is related to different phenotypes: i) efficient metabolic development, ii) improved regulation of intestinal permeability, iii) favourable modulation of local and systemic inflammatory and efficient immune responses, iv) efective regulation of systemic pH and, v) protection against acute stressful events such as environmental exposure to altitude or heat. The type of sport, both intensity or volume characteristics promote microbiota specialisation. Individual assessment of the state of the gut microbiota can be an effective biomarker for monitoring health in the medium to long term. The relationship between the microbiota and the rest of the body is bidirectional and symbiotic, with a full connection between the systemic functions of the nervous, musculoskeletal, endocrine, metabolic, acid-base and immune systems. In addition, circadian rhythms, including regular physical activity, directly influence the adaptive response of the microbiota. In conclusion, regular stimuli of moderate- and high-intensity physical activity promote greater diversity, abundance, resilience and versatility of the gut microbiota. This effect is highly beneficial for human health when healthy lifestyle habits including nutrition, hydration, rest, chronoregulation and physical activity.
Collapse
Affiliation(s)
- Jesús Álvarez-Herms
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain; Phymo® Lab, Physiology and Molecular Laboratory, Collado Hermoso, Segovia, Spain.
| | - Adrián Odriozola
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
9
|
Zou X, Liu Y, Cui M, Wan Q, Chu X. The in vitro intestinal cell model: different co-cultured cells create different applications. J Drug Target 2024; 32:529-543. [PMID: 38537662 DOI: 10.1080/1061186x.2024.2333877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/16/2024] [Indexed: 06/20/2024]
Abstract
As a vitro absorption model, the Caco-2 cells originate from a human colon adenocarcinomas and can differentiate into a cell layer with enterocyte-like features. The Caco-2 cell model is popularly applied to explore drug transport mechanisms, to evaluate the permeability of drug and to predict the absorption of drugs or bioactive substances in the gut. However, there are limitations to the application of Caco-2 cell model due to lack of a mucus layer, the long culture period and the inability to accurately simulate the intestinal environment. The most frequent way to expand the Caco-2 cell model and address its limitations is by co-culturing it with other cells or substances. This article reviews the culture methods and applications of 3D and 2D co-culture cell models established around Caco-2 cells. It also concludes with a summary of model strengths and weaknesses.
Collapse
Affiliation(s)
- Xingyu Zou
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yue Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Mengyao Cui
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Qing Wan
- Tongling Institutes for Food and Drug Control, Tongling, China
| | - Xiaoqin Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China
- Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, Hefei, China
| |
Collapse
|
10
|
Abdo AAA, Hou Y, Hassan FA, Al-Sheraji SH, Aleryani H, Alanazi A, Sang Y. Antioxidant potential and protective effect of modified sea cucumber peptides against H 2O 2-induced oxidative damage in vitro HepG2 cells and in vivo zebrafish model. Int J Biol Macromol 2024; 266:131090. [PMID: 38537858 DOI: 10.1016/j.ijbiomac.2024.131090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/06/2024]
Abstract
In this study, modified sea Cucumber Peptides (SCP) were prepared by reacting with xylooligosaccharide (XOS) and alginate oligosaccharides (AOS) via glycation. Free radical inhibitory and inhibition of oxidative stress of modified SCP was evaluated using human hepatocellular carcinoma (HepG2) cells and zebrafish embryos. LC-MS analysis revealed that SCPs mainly consist of 40 active peptides, with an average molecular weight of 1122.168 Da and an average length of 11 amino acid residues. For amino acid composition, L-Asparagine, L-Methionine, and L-Aspartic Acid were dominant amino acids in SCP. The result showed that the antioxidant ability of SCP against 2,2-Diphenyl-1-picrylhydrazyl (DPPH), superoxide anion radical (O-2), and Hydroxyl Radical (OH) was significantly improved after modification. In HepG2 cells, the modified SCP showed stronger protection than native SCP native against H2O2-induced oxidative stress by enhancing cell viability and reducing radical oxygen species (ROS) generation. The inhibition effect of SCP was increased after modification with XOS and AOS by 13 % and 19 % respectively. Further studies displayed that the activity of antioxidative enzymes, including Superoxide dismutase (SOD), Glutathione Peroxidase (GPx), and catalase (CAT), was remarkably enhanced, whereas malondialdehyde (MDA) level was reduced compared with native SCP and H2O2-treated groups, thus, improving the intracellular antioxidant defenses. The gene expression analysis showed that the mechanism underlying the modified SCP protective effect may be linked with the capability to regulate Nuclear factor-erythroid factor 2-related factor 2 (NRF2) gene expression. The protective effect of modified SCP against H2O2 in vitro was confirmed in vivo by reduced toxicity in zebrafish embryos via improvement of mortality rate, hatching rate, heart beating rate, and deformities of the zebrafish model. However, SCPAOS conjugate displayed greater antioxidant potentials compared to the SCPXOS, the different effects between SCPAOS and SCPXOS could be due to their different antioxidant activity. Thus, modified SCP could be potentially used as a novel nutraceutical in the preparation of anti-aging food and medicine.
Collapse
Affiliation(s)
- Abdullah Abdulaziz Abbod Abdo
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, Hebei, China; Department of Food Sciences and Technology, Faculty of Agriculture and Food Sciences, Ibb University, 70270 Ibb, Yemen
| | - Yakun Hou
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Fouad Abdulrahman Hassan
- Department of Medical Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Ibb University, 70270 Ibb, Yemen
| | - Sadeq Hasan Al-Sheraji
- Department of Medical Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Ibb University, 70270 Ibb, Yemen
| | - Hamzah Aleryani
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, Hebei, China; Department of Food Sciences and Technology, Faculty of Agriculture and Food Sciences, Ibb University, 70270 Ibb, Yemen
| | - Abdulmohsen Alanazi
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield S10 2RX, United Kingdom
| | - Yaxin Sang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, Hebei, China.
| |
Collapse
|
11
|
Zhang Y, Anderson RC, You C, Purba A, Yan M, Maclean P, Liu Z, Ulluwishewa D. Lactiplantibacillus plantarum ST-III and Lacticaseibacillus rhamnosus KF7 Enhance the Intestinal Epithelial Barrier in a Dual-Environment In Vitro Co-Culture Model. Microorganisms 2024; 12:873. [PMID: 38792703 PMCID: PMC11124027 DOI: 10.3390/microorganisms12050873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Intestinal barrier hyperpermeability, which is characterised by impaired tight junction proteins, is associated with a variety of gastrointestinal and systemic diseases. Therefore, maintaining intestinal barrier integrity is considered one of the effective strategies to reduce the risk of such disorders. This study aims to investigate the potential benefits of two probiotic strains (Lactiplantibacillus plantarum ST-III and Lacticaseibacillus rhamnosus KF7) on intestinal barrier function by using a physiologically relevant in vitro model of the intestinal epithelium. Our results demonstrate that both strains increased transepithelial electrical resistance, a measure of intestinal barrier integrity. Immunolocalisation studies indicated that this improvement in barrier function was not due to changes in the co-localisation of the tight junction (TJ) proteins ZO-1 and occludin. However, we observed several modifications in TJ-related genes in response to the probiotics, including the upregulation of transmembrane and cytosolic TJ proteins, as well as TJ signalling proteins. Gene expression modulation was strain- and time-dependent, with a greater number of differentially expressed genes and higher fold-change being observed in the L. plantarum ST-III group and at the latter timepoint. Further studies to investigate how the observed gene expression changes can lead to enhanced barrier function will aid in the development of probiotic foods to help improve intestinal barrier function.
Collapse
Affiliation(s)
- Yilin Zhang
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China; (Y.Z.); (C.Y.); (M.Y.)
| | - Rachel C. Anderson
- AgResearch, Te Ohu Rangahau Kai, Palmerston North 4410, New Zealand; (R.C.A.); (A.P.)
| | - Chunping You
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China; (Y.Z.); (C.Y.); (M.Y.)
| | - Ajitpal Purba
- AgResearch, Te Ohu Rangahau Kai, Palmerston North 4410, New Zealand; (R.C.A.); (A.P.)
| | - Minghui Yan
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China; (Y.Z.); (C.Y.); (M.Y.)
| | - Paul Maclean
- AgResearch, Grasslands Research Centre, Palmerston North 4410, New Zealand;
| | - Zhenmin Liu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China; (Y.Z.); (C.Y.); (M.Y.)
| | - Dulantha Ulluwishewa
- AgResearch, Te Ohu Rangahau Kai, Palmerston North 4410, New Zealand; (R.C.A.); (A.P.)
| |
Collapse
|
12
|
Ran R, Muñoz Briones J, Jena S, Anderson NL, Olson MR, Green LN, Brubaker DK. Detailed survey of an in vitro intestinal epithelium model by single-cell transcriptomics. iScience 2024; 27:109383. [PMID: 38523788 PMCID: PMC10959667 DOI: 10.1016/j.isci.2024.109383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/01/2023] [Accepted: 02/27/2024] [Indexed: 03/26/2024] Open
Abstract
The co-culture of two adult human colorectal cancer cell lines, Caco-2 and HT29, on Transwell is commonly used as an in vitro gut mimic, yet the translatability of insights from such a system to adult human physiological contexts is not fully characterized. Here, we used single-cell RNA sequencing on the co-culture to obtain a detailed survey of cell type heterogeneity in the system and conducted a holistic comparison with human physiology. We identified the intestinal stem cell-, transit amplifying-, enterocyte-, goblet cell-, and enteroendocrine-like cells in the system. In general, the co-culture was fetal intestine-like, with less variety of gene expression compared to the adult human gut. Transporters for major types of nutrients were found in the majority of the enterocytes-like cells in the system. TLR 4 was not expressed in the sample, indicating that the co-culture model is incapable of mimicking the innate immune aspect of the human epithelium.
Collapse
Affiliation(s)
- Ran Ran
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Javier Muñoz Briones
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
- Purdue Interdisciplinary Life Science Program, West Lafayette, IN, USA
| | - Smrutiti Jena
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Nicole L. Anderson
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Matthew R. Olson
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Leopold N. Green
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Douglas K. Brubaker
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
- The Blood, Heart, Lung, and Immunology Research Center, Case Western Reserve University, University Hospitals of Cleveland, Cleveland, OH, USA
| |
Collapse
|
13
|
Xu Y, Sa Y, Zhang C, Wang J, Shao Q, Liu J, Wang S, Zhou J. A preventative role of nitrate for hypoxia-induced intestinal injury. Free Radic Biol Med 2024; 213:457-469. [PMID: 38281627 DOI: 10.1016/j.freeradbiomed.2024.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/02/2024] [Accepted: 01/18/2024] [Indexed: 01/30/2024]
Abstract
BACKGROUND Studying effective interventions for hypoxia-induced injury is crucial, particularly in high-altitude areas. Symptoms stemming from intestinal injuries have a significant impact on the health of individuals transitioning from plains to plateau regions. This research explores the effects and mechanisms of nitrate supplementation in preventing hypoxia-induced intestinal injury. METHODS A hypoxia survival mouse model was established using 7% O2 conditions. The intervention with 4 mM sodium nitrate (NaNO3) in drinking water commenced 7 days prior to hypoxia exposure. Weight monitoring, hematoxylin and eosin (HE) staining, transmission electron microscopy (TEM), and intestinal permeability assays were employed for physiological, histological, and functional analyses. Quantitative PCR (qPCR), Western blot, and immunofluorescence were utilized to analyze the levels of tight junction (TJ) proteins and hypoxia-inducible factor 1α (Hif 1α). RNA sequencing (RNA-seq) identified nitrate's target, and chromatin immunoprecipitation (ChIP) verified the transcriptional impact of Hif 1α on TJ proteins. Villin-cre mice infected with AAV9-FLEX-EGFP-Hif 1α were used for mechanism validation. RESULTS The results demonstrated that nitrate supplementation significantly alleviated small intestinal epithelial cell necrosis, intestinal permeability, disruption of TJs, and weight loss under hypoxia. Moreover, the nitrate-triggered enhancement of TJs is mediated by Hif 1α nuclear translocation and its subsequent transcriptional function. The effect of nitrate supplementation on TJs was largely attributed to the stimulation of the EGFR/PI3K/AKT/mTOR/Hif 1α signaling pathways. CONCLUSION Nitrate serves as a novel approach in preventing hypoxia-induced intestinal injury, acting through Hif 1α activation to promote the transcription of TJ proteins. Furthermore, our study provides new and compelling evidence for the protective effects of nitrate in hypoxic conditions, especially at high altitudes.
Collapse
Affiliation(s)
- Yifan Xu
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing China
| | - Yunqiong Sa
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing China
| | - Chunmei Zhang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing China; Laboratory for Oral and General Health Integration and Translation, Beijing Tiantan Hospital, Capital Medical University, Beijing China
| | - Jinsong Wang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing China
| | - Qianqian Shao
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Jia Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Songlin Wang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing China; Immunology Research Centre for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing China; Laboratory for Oral and General Health Integration and Translation, Beijing Tiantan Hospital, Capital Medical University, Beijing China; Research Units of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing China.
| | - Jian Zhou
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China; Immunology Research Centre for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing China; Laboratory for Oral and General Health Integration and Translation, Beijing Tiantan Hospital, Capital Medical University, Beijing China; Department of VIP Dental Service, School of Stomatology, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
14
|
Ferreira B, Barros AS, Leite-Pereira C, Viegas J, das Neves J, Nunes R, Sarmento B. Trends in 3D models of inflammatory bowel disease. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167042. [PMID: 38296115 DOI: 10.1016/j.bbadis.2024.167042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/11/2023] [Accepted: 01/25/2024] [Indexed: 02/20/2024]
Abstract
Inflammatory bowel disease (IBD) encompasses a set of chronic inflammatory conditions, namely Crohn's disease and ulcerative colitis. Despite all advances in the management of IBD, a definitive cure is not available, largely due to a lack of a holistic understanding of its etiology and pathophysiology. Several in vitro, in vivo, and ex vivo models have been developed over the past few decades in order to abbreviate remaining gaps. The establishment of reliable and predictable in vitro intestinal inflammation models may indeed provide valuable tools to expedite and validate the development of therapies for IBD. Three-dimensional (3D) models provide a more accurate representation of the different layers of the intestine, contributing to a stronger impact on drug screening and research on intestinal inflammation, and bridging the gap between in vitro and in vivo research. This work provides a critical overview on the state-of-the-art on existing 3D models of intestinal inflammation and discusses the remaining challenges, providing insights on possible pathways towards achieving IBD mimetic models. We also address some of the main challenges faced by implementing cell culture models in IBD research while bearing in mind clinical translational aspects.
Collapse
Affiliation(s)
- Bárbara Ferreira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Andreia S Barros
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Catarina Leite-Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Juliana Viegas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - José das Neves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; IUCS-CESPU - Instituto Universitário de Ciências da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Rute Nunes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; IUCS-CESPU - Instituto Universitário de Ciências da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; IUCS-CESPU - Instituto Universitário de Ciências da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal.
| |
Collapse
|
15
|
Cheng J, Sun Y, Zhao Y, Guo Q, Wang Z, Wang R. Research Progress on the Mechanism of Intestinal Barrier Damage and Drug Therapy in a High Altitude Environment. Curr Drug Deliv 2024; 21:807-816. [PMID: 36892115 DOI: 10.2174/1567201820666230309090241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/13/2023] [Accepted: 01/23/2023] [Indexed: 03/10/2023]
Abstract
The plateau is a typical extreme environment with low temperature, low oxygen and high ultraviolet rays. The integrity of the intestinal barrier is the basis for the functioning of the intestine, which plays an important role in absorbing nutrients, maintaining the balance of intestinal flora, and blocking the invasion of toxins. Currently, there is increasing evidence that high altitude environment can enhance intestinal permeability and disrupt intestinal barrier integrity. This article mainly focuses on the regulation of the expression of HIF and tight junction proteins in the high altitude environment, which promotes the release of pro-inflammatory factors, especially the imbalance of intestinal flora caused by the high altitude environment. The mechanism of intestinal barrier damage and the drugs to protect the intestinal barrier are reviewed. Studying the mechanism of intestinal barrier damage in high altitude environment is not only conducive to understanding the mechanism of high altitude environment affecting intestinal barrier function, but also provides a more scientific medicine treatment method for intestinal damage caused by the special high altitude environment.
Collapse
Affiliation(s)
- Junfei Cheng
- PLA Key Laboratory of Plateau Environmental Damage Control, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, 730050, China
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yuemei Sun
- PLA Key Laboratory of Plateau Environmental Damage Control, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, 730050, China
| | - Yilan Zhao
- PLA Key Laboratory of Plateau Environmental Damage Control, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, 730050, China
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Qianwen Guo
- PLA Key Laboratory of Plateau Environmental Damage Control, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, 730050, China
| | - ZiHan Wang
- PLA Key Laboratory of Plateau Environmental Damage Control, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, 730050, China
| | - Rong Wang
- PLA Key Laboratory of Plateau Environmental Damage Control, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, 730050, China
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
16
|
Fan S, Zhou Y, Zhao Y, Daglia M, Zhang J, Zhu Y, Bai J, Zhu L, Xiao X. Metabolomics reveals the effects of Lactiplantibacillus plantarum dy-1 fermentation on the lipid-lowering capacity of barley β-glucans in an in vitro model of gut-liver axis. Int J Biol Macromol 2023; 253:126861. [PMID: 37714241 DOI: 10.1016/j.ijbiomac.2023.126861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/11/2023] [Accepted: 09/09/2023] [Indexed: 09/17/2023]
Abstract
Bioactive polysaccharides known as the biological response modifiers, can directly interact with intestinal epithelium cells (IEC) and regulate key metabolic processes such as lipid metabolism. Here, the coculture of Caco-2/HT29 monolayer (>400 Ω × cm2) and HepG2 cells was developed to mimic the gut-liver interactions. This system was used to investigate the effects of raw and fermented barley β-glucans (RBG and FBG) on lipid metabolism by directly interacting with IEC. Both RBG and FBG significantly and consistently reduced the lipid droplets and triacylglycerol levels in monoculture and coculture of HepG2 overloaded with oleic acid. Notably, FBG significantly and distinctly elevated PPARα (p < 0.05) and PPARα-responsive ACOX-1 (p < 0.01) gene expressions, promoting lipid degradation in cocultured HepG2. Moreover, the metabolomics analyses revealed that FBG had a unique impact on extracellular metabolites, among them, the differential metabolite thiomorpholine 3-carboxylate was significantly and strongly correlated with PPARα (r = -0.68, p < 0.01) and ACOX-1 (r = -0.76, p < 0.01) expression levels. Taken together, our findings suggest that FBG-mediated gut-liver interactions play a key role in its lipid-lowering effects that are superior to those of RBG. These results support the application of Lactiplantibacillus fermentation for improving hypolipidemic outcomes.
Collapse
Affiliation(s)
- Songtao Fan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yurong Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yansheng Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, Naples, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | - Jiayan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ying Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Juan Bai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Lin Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
17
|
Wu J, Zhang F, Liu G, Abudureheman R, Bai S, Wu X, Zhang C, Ma Y, Wang X, Zha Q, Zhong H. Transcriptome and coexpression network analysis reveals properties and candidate genes associated with grape ( Vitis vinifera L.) heat tolerance. FRONTIERS IN PLANT SCIENCE 2023; 14:1270933. [PMID: 38023926 PMCID: PMC10643163 DOI: 10.3389/fpls.2023.1270933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023]
Abstract
Temperature is one of the most important environmental factors affecting grape season growth and geographical distribution. With global warming and the increasing occurrence of extreme high-temperature weather, the impact of high temperatures on grape production has intensified. Therefore, identifying the molecular regulatory networks and key genes involved in grape heat tolerance is crucial for improving the resistance of grapes and promoting sustainable development in grape production. In this study, we observed the phenotypes and cellular structures of four grape varieties, namely, Thompson Seedless (TS), Brilliant Seedless (BS), Jumeigui (JMG), and Shine Muscat (SM), in the naturally high-temperature environment of Turpan. Heat tolerance evaluations were conducted. RNA-seq was performed on 36 samples of the four varieties under three temperature conditions (28°C, 35°C, and 42°C). Through differential expression analysis revealed the fewest differentially expressed genes (DEGs) between the heat-tolerant materials BS and JMG, and the DEGs common to 1890 were identified among the four varieties. The number of differentially expressed genes within the materials was similar, with a total of 3767 common DEGs identified among the four varieties. KEGG enrichment analysis revealed that fatty acid metabolism, starch and sucrose metabolism, plant hormone signal transduction, the MAPK signaling pathway, and plant-pathogen interactions were enriched in both between different temperatures of the same material, and between different materials of the same temperature. We also conducted statistical and expression pattern analyses of differentially expressed transcription factors. Based on Weighted correlation network analysis (WGCNA), four specific modules highly correlated with grape heat tolerance were identified by constructing coexpression networks. By calculating the connectivity of genes within the modules and expression analysis, six candidate genes (VIT_04s0044g01430, VIT_17s0000g09190, VIT_01s0011g01350, VIT_01s0011g03330, VIT_04s0008g05610, and VIT_16s0022g00540) related to heat tolerance were discovered. These findings provide a theoretical foundation for further understanding the molecular mechanisms of grape heat tolerance and offer new gene resources for studying heat tolerance in grapes.
Collapse
Affiliation(s)
- Jiuyun Wu
- Turpan Research Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Xinjiang Grape Engineering Technology Research Center, Turpan, China
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Fuchun Zhang
- Turpan Research Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Xinjiang Grape Engineering Technology Research Center, Turpan, China
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Guohong Liu
- Turpan Research Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Xinjiang Grape Engineering Technology Research Center, Turpan, China
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Riziwangguli Abudureheman
- Turpan Research Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Xinjiang Grape Engineering Technology Research Center, Turpan, China
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Shijian Bai
- Turpan Research Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Xinjiang Grape Engineering Technology Research Center, Turpan, China
- Xinjiang Uighur Autonomous Region of Grapes and Melons Research Institution, Turpan, China
| | - Xinyu Wu
- Turpan Research Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Xinjiang Grape Engineering Technology Research Center, Turpan, China
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Chuan Zhang
- Turpan Research Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Xinjiang Grape Engineering Technology Research Center, Turpan, China
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Yaning Ma
- Turpan Research Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Xinjiang Grape Engineering Technology Research Center, Turpan, China
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Xiping Wang
- Turpan Research Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Xinjiang Grape Engineering Technology Research Center, Turpan, China
- Colleges of Horticulture, Northwest A&F University, Xianyang, China
| | - Qian Zha
- Turpan Research Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Xinjiang Grape Engineering Technology Research Center, Turpan, China
- Research Institute of Forestry and Pomology, Shanghai Academy of Agricultural Science, Shanghai, China
| | - Haixia Zhong
- Turpan Research Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Xinjiang Grape Engineering Technology Research Center, Turpan, China
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| |
Collapse
|
18
|
McKenna ZJ, Bellovary BN, Ducharme JB, Deyhle MR, Wells AD, Fennel ZJ, Specht JW, Houck JM, Mayschak TJ, Mermier CM. Circulating markers of intestinal barrier injury and inflammation following exertion in hypobaric hypoxia. Eur J Sport Sci 2023; 23:2002-2010. [PMID: 37051668 DOI: 10.1080/17461391.2023.2203107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Hypoxia induced intestinal barrier injury, microbial translocation, and local/systemic inflammation may contribute to high-altitude associated gastrointestinal complications or symptoms of acute mountain sickness (AMS). Therefore, we tested the hypothesis that six-hours of hypobaric hypoxia increases circulating markers of intestinal barrier injury and inflammation. A secondary aim was to determine if the changes in these markers were different between those with and without AMS. Thirteen participants were exposed to six hours of hypobaric hypoxia, simulating an altitude of 4572 m. Participants completed two 30-minute bouts of exercise during the early hours of hypoxic exposure to mimic typical activity required by those at high altitude. Pre- and post-exposure blood samples were assessed for circulating markers of intestinal barrier injury and inflammation. Data below are presented as mean ± standard deviation or median [interquartile range]. Intestinal fatty acid binding protein (Δ251 [103-410] pg•mL-1; p = 0.002, d = 0.32), lipopolysaccharide binding protein (Δ2 ± 2.4 μg•mL-1; p = 0.011; d = 0.48), tumor necrosis factor-α (Δ10.2 [3-42.2] pg•mL-1; p = 0.005; d = 0.25), interleukin-1β (Δ1.5 [0-6.7] pg•mL-1 p = 0.042; d = 0.18), and interleukin-1 receptor agonist (Δ3.4 [0.4-5.2] pg•mL-1p = 0.002; d = 0.23) increased from pre- to post-hypoxia. Six of the 13 participants developed AMS; however, the pre- to post-hypoxia changes for each marker were not different between those with and without AMS (p > 0.05 for all indices). These data provide evidence that high altitude exposures can lead to intestinal barrier injury, which may be an important consideration for mountaineers, military personnel, wildland firefighters, and athletes who travel to high altitudes to perform physical work or exercise.
Collapse
Affiliation(s)
- Zachary J McKenna
- Department of Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Bryanne N Bellovary
- Kinesiology Departments, State University of New York at Cortland, Cortland, New York
| | - Jeremy B Ducharme
- Department of Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Michael R Deyhle
- Department of Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Andrew D Wells
- Department of Health & Exercise, Wake Forest University, Winston-Salem, NC, USA
| | - Zachary J Fennel
- Department of Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Jonathan W Specht
- Department of Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, NM, USA
| | | | - Trevor J Mayschak
- Department of Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, NM, USA
- Department of Emergency Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Christine M Mermier
- Department of Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
19
|
Kapoor S, Padwad YS. Phloretin suppresses intestinal inflammation and maintained epithelial tight junction integrity by modulating cytokines secretion in in vitro model of gut inflammation. Cell Immunol 2023; 391-392:104754. [PMID: 37506521 DOI: 10.1016/j.cellimm.2023.104754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/22/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023]
Abstract
Ulcerative colitis is a type of inflammatory bowel disease which in long run can lead to colorectal cancer (CRC). Chronic inflammation can be a key factor for the occurrence of CRC thus mitigating an inflammation can be a preventive strategy for the occurrence of CRC. In this study we have explored the anti-inflammatory potential of phloretin, in in vitro gut inflammation model, developed by co-culture of Caco2 (intestinal epithelial) cells and RAW264.7 macrophages (immune cells). Phloretin is a dihydrochalcone present in apple, pear and strawberries. An anti-inflammatory effect of phloretin in reducing LPS induced inflammation and maintenance of transepithelial electric resistance (TEER) in Caco2 cells was examined. Paracellular permeability assay was performed using Lucifer yellow dye to evaluate the effect of phloretin in inhibiting gut leakiness caused by inflammatory mediators secreted by activated macrophages. Phloretin attenuated LPS induced nitric oxide levels, oxidative stress, depolarization of mitochondrial membrane potential in Caco2 cells as evidenced by reduction in reactive oxygen species (ROS), and enhancement of MMP, and decrease in inflammatory cytokines IL8, TNFα, IL1β and IL6. It exhibited anti-inflammatory activity by inhibiting the expression of NFκB, iNOS and Cox2. Phloretin maintained the epithelial integrity by regulating the expression of tight junction proteins ZO1, occludin, Claudin1 and JAM. Phloretin reduced LPS induced levels of Cox2 along with the reduction in Src expression which further regulated an expression of tight junction protein occludin. Phloretin in combination to sodium pyruvate exhibited potential anti-inflammatory activity via targeting NFkB signaling. Our findings paved a way to position phloretin as nutraceutical in preventing the occurrence of colitis and culmination of disease into colitis associated colorectal cancer.
Collapse
Affiliation(s)
- Smita Kapoor
- Pharmacology and Toxicology Lab, Dietetics & Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Yogendra S Padwad
- Pharmacology and Toxicology Lab, Dietetics & Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
20
|
Wickramasinghe HKJP, Stepanchenko N, Oconitrillo MJ, Goetz BM, Abeyta MA, Gorden PJ, Baumgard LH, Appuhamy JADRN. Effects of a phytogenic feed additive on weaned dairy heifer calves subjected to a diurnal heat stress bout. J Dairy Sci 2023; 106:6114-6127. [PMID: 37479578 DOI: 10.3168/jds.2022-22856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/17/2023] [Indexed: 07/23/2023]
Abstract
The study objective was to evaluate the effects of a phytogenic feed additive (PFA) on dry matter intake (DMI), average daily gain (ADG), inflammation, and oxidative stress markers of heifer calves exposed to a heat stress bout in the summer. A total of18 Holstein and 4 Jersey heifer calves (192 ± 5 kg of body weight at 162 ± 16 d of age) housed in indoor stalls were assigned to 1 of 2 dietary treatments (n = 11; 9 Holstein and 2 Jersey): (1) a basal total mixed ration (CTL), and (2) CTL top-dressed with 0.25 g/d of PFA. Following 7 d of acclimation, baseline measurements were made over 7 d under regular summer conditions [average temperature-humidity index (THI) = 79 from 0900 to 2000 h, and 75 from 2000 to 0900 h]. Calves were then subjected to a 7-d cyclic heat stress bout (HS) by turning on barn heaters and increasing the barn temperature to 33.0°C only during the daytime (the average THI = 85 from 0900 to 2000 h). The study continued for an extra 4-d period after HS ended (post-HS). The HS increased rectal temperature, skin temperature, and respiration rate from the baseline by 1.0°C, 4.0°C, and 49 breaths/min, respectively. The drinking water intake increased by 32% in response to HS, and calves continued to consume more water (44%) than the baseline consumption even after HS ended. The treatment × time interactions were not significant for feed intake, ADG, partial pressure of O2 in the blood, and blood concentrations of inflammation markers such as haptoglobin and lipopolysaccharide binding protein (LBP), and antioxidant markers such as protein carbonyl and thiobarbituric acid (TBARS). The PFA tended to increase daytime DMI (0.24 kg/d) compared with CTL throughout the experiment but did not affect ADG, which decreased from 1.12 kg/d to 0.26 kg/d in response to HS. Both DMI (13%) and ADG (85%) increased during post-HS relative to baseline, indicating compensatory performances that were not affected by the PFA. Serum haptoglobin and plasma LBP concentrations of PFA calves were 44% and 38% lower than that of CTL calves across all time points. The PFA decreased O2 pressure and tended to decrease protein carbonyl concentration in the blood across all time points. The PFA tended to decrease TBARS concentration on the first day of HS and increase and decrease the ratio of reduced to oxidized glutathione in the blood during the baseline and post-HS periods, respectively. Despite the lack of growth improvements, feeding PFA seems to increase O2 levels in the blood and alleviate oxidative stress and inflammation of heifer calve exposed to diurnal heat waves (~7 d) in the summer.
Collapse
Affiliation(s)
| | - N Stepanchenko
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - M J Oconitrillo
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - B M Goetz
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - M A Abeyta
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - P J Gorden
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | | |
Collapse
|
21
|
Kikusato M, Toyomizu M. Mechanisms underlying the Effects of Heat Stress on Intestinal Integrity, Inflammation, and Microbiota in Chickens. J Poult Sci 2023; 60:2023021. [PMID: 37560151 PMCID: PMC10406517 DOI: 10.2141/jpsa.2023021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/11/2023] [Indexed: 08/11/2023] Open
Abstract
Poultry meat and egg production benefits from a smaller carbon footprint, as well as feed and water consumption, per unit of product, than other protein sources. Therefore, maintaining a sustainable production of poultry meat is important to meet the increasing global demand for this staple. Heat stress experienced during the summer season or in tropical/subtropical areas negatively affects the productivity and health of chickens. Crucially, its impact is predicted to grow with the acceleration of global warming. Heat stress affects the physiology, metabolism, and immune response of chickens, causing electrolyte imbalance, oxidative stress, endocrine disorders, inflammation, and immunosuppression. These changes do not occur independently, pointing to a systemic mechanism. Recently, intestinal homeostasis has been identified as an important contributor to nutrient absorption and the progression of systemic inflammation. Its mechanism of action is thought to involve neuroendocrine signaling, antioxidant response, the presence of oxidants in the diet, and microbiota composition. The present review focuses on the effect of heat stress on intestinal dysfunction in chickens and the underlying causative factors. Understanding these mechanisms will direct the design of strategies to mitigate the negative effect of heat stress, while benefiting both animal health and sustainable poultry production.
Collapse
Affiliation(s)
- Motoi Kikusato
- Animal Nutrition, Life Sciences, Graduate School of Agricultural Science,
Tohoku University, Sendai, Japan
| | - Masaaki Toyomizu
- Animal Nutrition, Life Sciences, Graduate School of Agricultural Science,
Tohoku University, Sendai, Japan
| |
Collapse
|
22
|
Enichen E, Adams RB, Demmig-Adams B. Physical Activity as an Adjunct Treatment for People Living with HIV? Am J Lifestyle Med 2023; 17:502-517. [PMID: 37426740 PMCID: PMC10328202 DOI: 10.1177/15598276221078222] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
This review evaluates physical activity as a candidate for an adjunct treatment, in conjunction with antiretroviral therapy (ART), for people living with HIV (PLWH). Evidence is summarized that chronic, non-resolving inflammation (a principal feature of immune system dysfunction) and a dysfunctional state of the gut environment are key factors in HIV infection that persist despite treatment with ART. In addition, evidence is summarized that regular physical activity may restore normal function of both the immune system and the gut environment and may thereby ameliorate symptoms and non-resolving inflammation-associated comorbidities that burden PLWH. Physicians who care for PLWH could thus consider incorporating physical activity into treatment plans to complement ART. It is also discussed that different types of physical activity can have different effects on the gut environment and immune function, and that future research should establish more specific criteria for the design of exercise regimens tailored to PLWH.
Collapse
Affiliation(s)
- Elizabeth Enichen
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA, (EE, BDA); Physical Therapy of Boulder, Boulder, CO, USA, (RBA)
| | - Robert B. Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA, (EE, BDA); Physical Therapy of Boulder, Boulder, CO, USA, (RBA)
| | - Barbara Demmig-Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA, (EE, BDA); Physical Therapy of Boulder, Boulder, CO, USA, (RBA)
| |
Collapse
|
23
|
Tummaruk P, De Rensis F, Kirkwood RN. Managing prolific sows in tropical environments. Mol Reprod Dev 2023; 90:533-545. [PMID: 36495558 DOI: 10.1002/mrd.23661] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
Litter size in modern sows has been dramatically improved in recent decades by genetic selection for highly prolific sows. In a tropical environment, the average total number of pigs born and number born alive are reported to be as high as 17.2 and 15.1 piglets per litter, respectively. Therefore, the new production target in many herds aims to achieve 30-40 pigs weaned per sow per year. Despite the improvements in litter size, the mean preweaning piglet mortality rate remains high, at between 10% and 20%, in major pig-producing countries. A sufficient daily feed intake by lactating sows is important for high milk production as sow milk yield is the limiting factor for piglet growth rate. Heat stress, which can occur when the ambient temperatures rise above 25°C, is one of the major problems that decreases daily feed intake and compromises milk yield. Therefore, it is necessary to encourage high feed intakes to achieve high milk yields. However, even with high nutrient intakes, productivity can be constrained by intestinal barrier function, limiting digestive ability, and allowing potential pathogens and/or toxins to become systemic. This is more likely greater under tropical conditions because of heat stress, exacerbating sow fertility problems. Underpinning sow herd performance, including responses to environmental challenges, is the selection of appropriate gilts, for example, selection and management for early puberty, thus presumably selecting the more fertile gilts and the correct management of lactation to improve the number of weaned piglets are some of the key factors for future reproductive efficiency of the farm under tropical conditions.
Collapse
Affiliation(s)
- Padet Tummaruk
- Department of Obstetrics, Gynaecology and Reproduction, Centre of Excellence in Swine Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Fabio De Rensis
- Department of Veterinary Medical Science, University of Parma, Parma, Italy
| | - Roy N Kirkwood
- School of Animal and Veterinary Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|
24
|
Lv Y, Wang W, Liu Y, Yi B, Chu T, Feng Z, Liu J, Wan X, Wang Y. Platycodin D represses β-catenin to suppress metastasis of cetuximab-treated KRAS wild-type colorectal cancer cells. Clin Exp Metastasis 2023:10.1007/s10585-023-10218-6. [PMID: 37326719 DOI: 10.1007/s10585-023-10218-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
Cetuximab, an epidermal growth factor receptor (EGFR) inhibitor, is extensively used for clinical therapy in KRAS wild-type colorectal cancer (CRC) patients. However, some patients still cannot get benefit from the therapy, because metastasis and resistance occur frequently after cetuximab treatment. New adjunctive therapy is urgently needed to suppress metastasis of cetuximab-treated CRC cells. In this study, we used two KRAS wild-type CRC cells, HT29 and CaCo2, to investigate whether platycodin D, a triterpenoid saponin isolated from Chinese medicinal herb Platycodon grandifloras, is able to suppress the metastasis of cetuximab-treated CRC. Label-free quantitative proteomics analyses showed that platycodin D but not cetuximab significantly inhibited expression of β-catenin in both CRC cells, and suggested that platycodin D counteracted the inhibition effect of cetuximab on cell adherence and functioned in repressing cell migration and invasion. Western blot results showed that single platycodin D treatment or combined platycodin D and cetuximab enhanced inhibition effects on expressions of key genes in Wnt/β-catenin signaling pathway, including β-catenin, c-Myc, Cyclin D1 and MMP-7, compared to single cetuximab treatment. Scratch wound-healing and transwell assays showed that platycodin D combined with cetuximab suppressed migration and invasion of CRC cells, respectively. Pulmonary metastasis model of HT29 and CaCo2 in nu/nu nude mice consistently showed that combined treatment using platycodin D and cetuximab inhibited metastasis significantly in vivo. Our findings provide a potential strategy to inhibit CRC metastasis during cetuximab therapy by addition of platycodin D.
Collapse
Affiliation(s)
- Yongming Lv
- Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Wenhong Wang
- Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Yanfei Liu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ben Yi
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tianhao Chu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhiqiang Feng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jun Liu
- The Fourth Central Hospital Affiliated to Nankai University, Tianjin, China
| | - Xuehua Wan
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.
| | - Yijia Wang
- Tianjin Union Medical Center, Nankai University, Tianjin, China.
| |
Collapse
|
25
|
Gomes GB, Zubieta CS, Guilhermi JDS, Toffoli-Kadri MC, Beatriz A, Rafique J, Parisotto EB, Saba S, Perdomo RT. Selenylated Imidazo [1,2- a]pyridine Induces Apoptosis and Oxidative Stress in 2D and 3D Models of Colon Cancer Cells. Pharmaceuticals (Basel) 2023; 16:814. [PMID: 37375763 DOI: 10.3390/ph16060814] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Colon cancer incidence rates are increasing annually, a scenario aggravated by genetic and epigenetic alterations that promote drug resistance. Recent studies showed that novel synthetic selenium compounds are more efficient and less toxic than conventional drugs, demonstrating biocompatibility and pro-oxidant effects on tumor cells. This study aimed to investigate the cytotoxic effect of MRK-107, an imidazo [1,2- a]pyridine derivative, in 2D and 3D cell culture models of colon cancer (Caco-2 and HT-29). Sulforhodamine B results revealed a GI50 of 2.4 µM for Caco-2, 1.1 µM for HT-29, and 22.19 µM for NIH/3T3 in 2D cultures after 48 h of treatment. Cell recovery, migration, clonogenic, and Ki-67 results corroborated that MRK-107 inhibits cell proliferation and prevents cell regeneration and metastatic transition by selectively reducing migratory and clonogenic capacity; non-tumor cells (NIH/3T3) re-established proliferation in less than 18 h. The oxidative stress markers DCFH-DA and TBARS revealed increased ROS generation and oxidative damage. Caspases-3/7 are activated and induce apoptosis as the main mode of cell death in both cell models, as assessed by annexin V-FITC and acridine orange/ethidium bromide staining. MRK-107 is a selective, redox-active compound with pro-oxidant and pro-apoptotic properties and the capacity to activate antiproliferative pathways, showing promise in anticancer drug research.
Collapse
Affiliation(s)
- Giovana Bicudo Gomes
- Postgraduate Course in Pharmaceutical Sciences, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, Brazil
| | - Claudia Stutz Zubieta
- Postgraduate Course in Pharmaceutical Sciences, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, Brazil
| | | | - Mônica Cristina Toffoli-Kadri
- Postgraduate Course in Pharmaceutical Sciences, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, Brazil
| | - Adilson Beatriz
- Laboratory of Synthesis and Transformation of Organic Molecules (SINTMOL), Institute of Chemistry (INQUI), Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79074-460, Brazil
| | - Jamal Rafique
- Instituto de Química (IQ), Universidade Federal de Goiás (UFG), Goiania 74690-900, Brazil
- Laboratory of Synthesis and Transformation of Organic Molecules (SINTMOL), Institute of Chemistry (INQUI), Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79074-460, Brazil
| | - Eduardo Benedetti Parisotto
- Postgraduate Course in Pharmaceutical Sciences, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, Brazil
| | - Sumbal Saba
- Instituto de Química (IQ), Universidade Federal de Goiás (UFG), Goiania 74690-900, Brazil
| | - Renata Trentin Perdomo
- Postgraduate Course in Pharmaceutical Sciences, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, Brazil
| |
Collapse
|
26
|
Developing New Cyclodextrin-Based Nanosponges Complexes to Improve Vitamin D Absorption in an In Vitro Study. Int J Mol Sci 2023; 24:ijms24065322. [PMID: 36982396 PMCID: PMC10049479 DOI: 10.3390/ijms24065322] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Vitamin D plays an important role in numerous cellular functions due to the ability to bind the Vitamin D receptor (VDR), which is present in different tissues. Several human diseases depend on low vitamin D3 (human isoform) serum level, and supplementation is necessary. However, vitamin D3 has poor bioavailability, and several strategies are tested to increase its absorption. In this work, the complexation of vitamin D3 in Cyclodextrin-based nanosponge (CD-NS, in particular, βNS-CDI 1:4) was carried out to study the possible enhancement of bioactivity. The βNS-CDI 1:4 was synthesized by mechanochemistry, and the complex was confirmed using FTIR-ATR and TGA. TGA demonstrated higher thermostability of the complexed form. Subsequently, in vitro experiments were performed to evaluate the biological activity of Vitamin D3 complexed in the nanosponges on intestinal cells and assess its bioavailability without cytotoxic effect. The Vitamin D3 complexes enhance cellular activity at the intestinal level and improve its bioavailability. In conclusion, this study demonstrates for the first time the ability of CD-NS complexes to improve the chemical and biological function of Vitamin D3.
Collapse
|
27
|
Effects of high-/low-temperature and high-altitude hypoxic environments on gut microbiota of sports people: A retrospective analysis. SPORTS MEDICINE AND HEALTH SCIENCE 2023. [DOI: 10.1016/j.smhs.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
|
28
|
Truzzi F, Whittaker A, D’Amen E, Valerii MC, Abduazizova V, Spisni E, Dinelli G. Spermidine-Eugenol Supplement Preserved Inflammation-Challenged Intestinal Cells by Stimulating Autophagy. Int J Mol Sci 2023; 24:ijms24044131. [PMID: 36835540 PMCID: PMC9964041 DOI: 10.3390/ijms24044131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Increases in non-communicable and auto-immune diseases, with a shared etiology of defective autophagy and chronic inflammation, have motivated research both on natural products in drug discovery fields and on the interrelationship between autophagy and inflammation. Within this framework, the tolerability and protective effects of a wheat-germ spermidine (SPD) and clove eugenol (EUG) combination supplement (SUPPL) were investigated on inflammation status (after the administration of lipopolysaccharide (LPS)) and on autophagy using human Caco-2 and NCM460 cell lines. In comparison to the LPS treatment alone, the SUPPL + LPS significantly attenuated ROS levels and midkine expression in monocultures, as well as occludin expression and mucus production in reconstituted intestinal equivalents. Over a timeline of 2-4 h, the SUPPL and SUPPL + LPS treatments stimulated autophagy LC3-11 steady state expression and turnover, as well as P62 turnover. After completely blocking autophagy with dorsomorphin, inflammatory midkine was significantly reduced in the SUPPL + LPS treatment in a non-autophagy-dependent manner. After a 24 h timeline, preliminary results showed that mitophagy receptor BNIP3L expression was significantly downregulated in the SUPPL + LPS treatment compared to the LPS alone, whereas conventional autophagy protein expression was significantly higher. The SUPPL shows promise in reducing inflammation and increasing autophagy to improve intestinal health.
Collapse
Affiliation(s)
- Francesca Truzzi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, 40127 Bologna, Italy
- Correspondence: ; Tel.: +39-051-2096674
| | - Anne Whittaker
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, 40127 Bologna, Italy
| | - Eros D’Amen
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, 40127 Bologna, Italy
| | - Maria Chiara Valerii
- Department of Biological, Geological, and Environmental Sciences, Alma Mater Studiorum—University of Bologna, 40127 Bologna, Italy
| | | | - Enzo Spisni
- Department of Biological, Geological, and Environmental Sciences, Alma Mater Studiorum—University of Bologna, 40127 Bologna, Italy
| | - Giovanni Dinelli
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, 40127 Bologna, Italy
| |
Collapse
|
29
|
Differential Effects of Oligosaccharides, Antioxidants, Amino Acids and PUFAs on Heat/Hypoxia-Induced Epithelial Injury in a Caco-2/HT-29 Co-Culture Model. Int J Mol Sci 2023; 24:ijms24021111. [PMID: 36674626 PMCID: PMC9861987 DOI: 10.3390/ijms24021111] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
(1) Exposure of intestinal epithelial cells to heat and hypoxia causes a (heat) stress response, resulting in the breakdown of epithelial integrity. There are indications that several categories of nutritional components have beneficial effects on maintaining the intestinal epithelial integrity under stress conditions. This study evaluated the effect of nine nutritional components, including non-digestible oligosaccharides (galacto-oligosaccharides (GOS), fructo-oligosaccharides (FOS), chitosan oligosaccharides (COS)), antioxidants (α-lipoic acid (ALA), resveratrol (RES)), amino acids (l-glutamine (Glu), l-arginine (Arg)) and polyunsaturated fatty acids (PUFAs) (docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA)), on heat/hypoxia-induced epithelial injury. (2) Two human colonic cell lines, Caco-2 and HT-29, were co-cultured and pre-treated with the nutritional components for 48 h. After pre-treatment, the cells were exposed to heat/hypoxia (42 °C, 5% O2) for 2 h. Epithelial integrity was evaluated by measuring trans-epithelial electrical resistance (TEER), paracellular Lucifer Yellow (LY) permeability, and tight junction (TJ) protein expression. Heat stress and oxidative stress levels were evaluated by determining heat-shock protein-70 (HSP-70) expression and the concentration of the lipid peroxidation product malondialdehyde (MDA). (3) GOS, FOS, COS, ALA, RES, Arg, and EPA presented protective effects on epithelial damage in heat/hypoxia-exposed Caco-2/HT-29 cells by preventing the decrease in TEER, the increase in LY permeability, and/or decrease in TJ proteins zonula occludens-1 (ZO-1) and claudin-3 expression. COS, RES, and EPA demonstrated anti-oxidative stress effects by suppressing the heat/hypoxia-induced MDA production, while Arg further elevated the heat/hypoxia-induced increase in HSP-70 expression. (4) This study indicates that various nutritional components have the potential to counteract heat/hypoxia-induced intestinal injury and might be interesting candidates for future in vivo studies and clinical trials in gastrointestinal disorders related to heat stress and hypoxia.
Collapse
|
30
|
Fu R, Jiang X, Li G, Zhu Y, Zhang H. Junctional complexes in epithelial cells: sentinels for extracellular insults and intracellular homeostasis. FEBS J 2022; 289:7314-7333. [PMID: 34453866 DOI: 10.1111/febs.16174] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/13/2021] [Accepted: 08/27/2021] [Indexed: 01/13/2023]
Abstract
The cell-cell and cell-ECM junctions within the epithelial tissues are crucial anchoring structures that provide architectural stability, mechanical resistance, and permeability control. Their indispensable role as signaling hubs orchestrating cell shape-related changes such as proliferation, differentiation, migration, and apoptosis has also been well recognized. However, growing amount of evidence now suggests that the multitasking nature of epithelial junctions extends well beyond anchorage-dependent or cell shape change-related biological processes. In this review, we discuss the emerging roles of junctional complexes in regulating innate immune defense, stress resistance, and intracellular proteostasis of the epithelial cells, with emphasis on the upstream regulation of epithelial junctions on various aspects of the epithelial barrier.
Collapse
Affiliation(s)
- Rong Fu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, China
| | - Xiaowan Jiang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, China
| | - Gang Li
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, China
| | - Yi Zhu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, China
| | - Huimin Zhang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, China
| |
Collapse
|
31
|
Zheng Y, Zhao Y, He W, Wang Y, Cao Z, Yang H, Wang W, Li S. Novel organic selenium source hydroxy-selenomethionine counteracts the blood-milk barrier disruption and inflammatory response of mice under heat stress. Front Immunol 2022; 13:1054128. [PMID: 36532046 PMCID: PMC9757697 DOI: 10.3389/fimmu.2022.1054128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/03/2022] [Indexed: 12/05/2022] Open
Abstract
Heat stress (HS) in summer has caused huge economic losses to animal husbandry production recently. When mammary gland is exposed to high temperatures, it will cause blood-milk barrier damage. Hydroxy-selenomethionine (HMSeBA) is a new selenium source with better guarantee of animals' production performance under stress, but whether it has protective effect on heat stress-induced blood-milk damage is still unclear. We established mammary epithelial cells and mice heat stress injury models to fill this research gap, and hope to provide theoretical basis for using HMSeBA to alleviate heat stress damage mammary gland. The results showed that (1) Heat stress significantly decreases in vitro transepithelial electrical resistance (TEER) and cell viability (P < 0.01), and significantly decreases clinical score, histological score, and total alveoli area of mice mammary gland tissue (P < 0.01). (2) HMSeBA significantly increases TEER and fluorescein sodium leakage of HS-induced monolayer BMECs (P < 0.01), significantly improves the milk production and total area of alveoli (P < 0.01), and reduces clinical score, histological score, mRNA expression of heat stress-related proteins, and inflammatory cytokines release of heat-stressed mice (P < 0.01). (3) HMSeBA significantly improves tight junction structure damage, and significantly up-regulated the expression of tight junction proteins (ZO-1, claudin 1, and occludin) as well as signal molecules PI3K, AKT, and mTOR (P < 0.01) in heat-stressed mammary tissue. (4) HMSeBA significantly increases glutathione peroxidase (GSH-Px), total antioxidant capacity (T-AOC), and superoxide dismutase release (SOD) (P < 0.01) and significantly reduce malondialdehyde (MDA) expression (P < 0.01) in heat-stressed mammary tissue. In conclusion, this study implemented heat-stressed cell and mice model and showed that HMSeBA significantly regulate antioxidant capacity, inhibited inflammation, and regulate tight junction proteins expression in blood-milk barrier via PI3K/AKT/mTOR signaling pathway, so as to alleviate mammary gland damage and ensure its structure and function integrity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wei Wang
- *Correspondence: Wei Wang, ; Shengli Li,
| | - Shengli Li
- *Correspondence: Wei Wang, ; Shengli Li,
| |
Collapse
|
32
|
The Chinese Herbal Formula Huoxiang Zhengqi Dropping Pills Prevents Acute Intestinal Injury Induced by Heatstroke by Increasing the Expression of Claudin-3 in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9230341. [PMID: 35958934 PMCID: PMC9357687 DOI: 10.1155/2022/9230341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022]
Abstract
Intestinal injury has been regarded as an important causative factor for systemic inflammation during heatstroke, and maintaining intestinal integrity has been a potential target for the prevention of HS. Huoxiang Zhengqi Dropping Pills (HZPD) is a modern preparation of Huoxiang Zhengqi and widely used to prevent HS. The present study aims to explore the protective effect of HZDP on intestinal injury during heatstroke and analyze its potential pharmacodynamic basis. Male rats in the control and HS groups were given normal saline, and those in the HZDP groups were given HZDP (0.23, 0.46, and 0.92 g/kg) before induction of HS. Serum contents of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), intestinal fatty acid-binding protein (iFABP), and diamine oxidase (DAO) were determined using ELISA. Histopathology of intestinal injury was observed following H&E staining. The expression of claudin-3 was determined using western blot, immunohistochemistry, and immunofluorescence techniques. Moreover, network pharmacological tools were used to analyze the potential pharmacodynamic basis and the mechanism of HZDP. Treatment with HZDP significantly prolonged the time to reach Tc. Compared with the control group, the contents of TNF-α, IL-6, iFABP, and DAO in HS rats increased markedly. HZDP treatments reduced these levels significantly, and the effects in the middle dose group (0.46 g/kg) were most obvious. HZDP also attenuated intestinal injury and significantly reversed the decrease in claudin-3 expression. Bioinformatics analysis suggested that 35 active ingredients and 128 target genes of HZDP were screened from TCMSP and 93 target genes intersected with heatstroke target genes, which were considered potential therapeutic targets. TNF-α and IL-6 were the main inflammatory target genes of HZDP correlated with HS. These results indicated that HZDP effectively protected intestinal barrier function and prevented acute intestinal injury by increasing the expression of claudin-3 in rats, eventually improving heat resistance.
Collapse
|
33
|
Peinado-Ruiz IC, Burgos-Molina AM, Sendra-Portero F, Ruiz-Gómez MJ. Relationship between heat shock proteins and cellular resistance to drugs and ageing. Exp Gerontol 2022; 167:111896. [PMID: 35870754 DOI: 10.1016/j.exger.2022.111896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 07/06/2022] [Accepted: 07/12/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND AND AIMS Ageing is a multifactorial degenerative process which causes a decrease in the cellular capacity for repair and adaptation to external stressors. In this way, it is important to maintain the proper balance of the proteome. Heat shock proteins (HSP) will intervene in this balance, which are responsible for the correct assembly, folding and translocation of other proteins when cells are subjected to stressors. This type of protein is overexpressed in human tumor cells, while its deficit, both in function and quantity, contributes to ageing processes. The present work aims to analyze the response of cells from studies carried out in normal and tumor cells that are subjected to stressors. METHODS AND RESULTS A PubMed search was performed using the keywords "cell ageing, cell longevity, resistance, HSP, heat shock proteins, thermal shock proteins". This search generated 212 articles. Subsequently, a series of inclusion and exclusion criteria were applied to select the articles of interest to be evaluated. Normal cells subjected to external stressors at low doses increase the number of HSP, causing them to become more resistant. In addition, tumor cells expressing high levels of HSP show greater resistance to treatment and increased cell replication. HSP intervene in the cellular resistance of both normal and tumor cells. CONCLUSIONS In the case of normal cells, the increase in HSP levels makes them respond effectively to an external stressor, increasing their resistance and not causing cell death. In the case of tumor cells, there is an increase in resistance to treatment.
Collapse
Affiliation(s)
- Isabel C Peinado-Ruiz
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Antonio M Burgos-Molina
- Departamento de Especialidades Quirúrgicas, Bioquímica e Inmunología, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Francisco Sendra-Portero
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Miguel J Ruiz-Gómez
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Málaga, Spain.
| |
Collapse
|
34
|
Hu W, Feng P, Zhang M, Tian T, Wang S, Zhao B, Li Y, Wang S, Wu C. Endotoxins Induced ECM-Receptor Interaction Pathway Signal Effect on the Function of MUC2 in Caco2/HT29 Co-Culture Cells. Front Immunol 2022; 13:916933. [PMID: 35757703 PMCID: PMC9226665 DOI: 10.3389/fimmu.2022.916933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Endotoxins are toxic substances that widely exist in the environment and can enter the intestine with food and other substances. Intestinal epithelial cells are protected by a mucus layer that contains MUC2 as its main structural component. However, a detailed understanding of the mechanisms involved in the function of the mucus barrier in endotoxin penetration is lacking. Here, we established the most suitable proportion of Caco-2/HT-29 co-culture cells as a powerful tool to evaluate the intestinal mucus layer. Our findings significantly advance current knowledge as focal adhesion and ECM-receptor interaction were identified as the two most significantly implicated pathways in MUC2 small interfering RNA (siRNA)-transfected Caco-2/HT-29 co-culture cells after 24 h of LPS stimulation. When the mucus layer was not intact, LPS was found to damage the tight junctions of Caco-2/HT29 co-cultured cells. Furthermore, LPS was demonstrated to inhibit the integrin-mediated focal adhesion structure and damage the matrix network structure of the extracellular and actin microfilament skeletons. Ultimately, LPS inhibited the interactive communication between the extracellular matrix and the cytoskeleton for 24 h in the siMUC2 group compared with the LPS(+) and LPS(-) groups. Overall, we recognized the potential of MUC2 as a tool for barrier function in several intestinal bacterial diseases.
Collapse
Affiliation(s)
- Wenxiang Hu
- College of Animal Veterinary Medicine, Northwest A & F University, Yanling City, China
| | - Ping Feng
- College of Life Sciences, Yulin University, Yulin, China
| | - Mingming Zhang
- College of Animal Veterinary Medicine, Northwest A & F University, Yanling City, China
| | - Tian Tian
- College of Animal Veterinary Medicine, Northwest A & F University, Yanling City, China
| | - Shengxiang Wang
- College of Animal Veterinary Medicine, Northwest A & F University, Yanling City, China
| | - Baoyu Zhao
- College of Animal Veterinary Medicine, Northwest A & F University, Yanling City, China
| | - Yajie Li
- College of Animal Veterinary Medicine, Northwest A & F University, Yanling City, China
| | - Shuo Wang
- College of Animal Veterinary Medicine, Northwest A & F University, Yanling City, China
| | - Chenchen Wu
- College of Animal Veterinary Medicine, Northwest A & F University, Yanling City, China
| |
Collapse
|
35
|
Boger KD, Sheridan AE, Ziegler AL, Blikslager AT. Mechanisms and modeling of wound repair in the intestinal epithelium. Tissue Barriers 2022; 11:2087454. [PMID: 35695206 PMCID: PMC10161961 DOI: 10.1080/21688370.2022.2087454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
The intestinal epithelial barrier is susceptible to injury from insults, such as ischemia or infectious disease. The epithelium's ability to repair wounded regions is critical to maintaining barrier integrity. Mechanisms of intestinal epithelial repair can be studied with models that recapitulate the in vivo environment. This review focuses on in vitro injury models and intestinal cell lines utilized in such systems. The formation of artificial wounds in a controlled environment allows for the exploration of reparative physiology in cell lines modeling diverse aspects of intestinal physiology. Specifically, the use of intestinal cell lines, IPEC-J2, Caco-2, T-84, HT-29, and IEC-6, to model intestinal epithelium is discussed. Understanding the unique systems available for creating intestinal injury and the differences in monolayers used for in vitro work is essential for designing studies that properly capture relevant physiology for the study of intestinal wound repair.
Collapse
Affiliation(s)
- Kasey D Boger
- Comparative Medicine Institute, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Ana E Sheridan
- Comparative Medicine Institute, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Amanda L Ziegler
- Comparative Medicine Institute, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Anthony T Blikslager
- Comparative Medicine Institute, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
36
|
Yu Y, Bian Y, Shi JX, Gu Y, Yuan DP, Yu B, Shi L, Dou DH. Geniposide promotes splenic Treg differentiation to alleviate colonic inflammation and intestinal barrier injury in ulcerative colitis mice. Bioengineered 2022; 13:14616-14631. [PMID: 36694912 PMCID: PMC9995132 DOI: 10.1080/21655979.2022.2092678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Geniposide has been proven to have a therapeutic effect on ulcerative colitis (UC) in animals, but its potential mechanism in UC remains to be clarified. The purpose of this study was to confirm the efficacy of geniposide in UC and to investigate the possible mechanism of geniposide in UC treatment. In vivo, geniposide relieved weight loss and reduced intestinal tissue damage in UC mice. Geniposide decreased the levels of IL-1β and TNF-α and increased IL-10 levels in the colon and serum of UC mice. Geniposide increased FOXP3 expression in the colon and the number of CD4+ FOXP3+ cells in the spleen of UC mice. BD750 abolished the above regulatory effect of GE on UC mice. In vitro, geniposide increased the number of CD4+ FOXP3+ cells in spleen cells from normal mice, decreased the levels of IL-1β, CCL2 and TNF-α in the supernatant of LPS-treated Caco-2 cells, and decreased the protein expression of Beclin-1 and Occludin in cacO-2 cells. Epirubicin inhibited the effect of geniposide on increasing the number of CD4+ FOXP3+ cells in spleen cells, attenuated the inhibitory effect of geniposide on proinflammatory factors and attenuated the upregulation of geniposide on tight junction proteins in LPS-treated Caco-2 cells in the coculture system. In conclusion, geniposide has an effective therapeutic effect on UC. Increasing Treg differentiation of spleen cells is the mechanism by which geniposide alleviates intestinal inflammation and barrier injury in UC.
Collapse
Affiliation(s)
- Yun Yu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yong Bian
- Laboratory Animal Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jian-Xin Shi
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Gu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dong-Ping Yuan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bin Yu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Le Shi
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Da-Hai Dou
- Department of Pharmacy, Jiangsu Province Hospital, Nanjing, China
| |
Collapse
|
37
|
McKenna ZJ, Fennel ZJ, Berkemeier QN, Nava RC, Amorim FT, Deyhle MR, Mermier CM. Exercise in hypobaric hypoxia increases markers of intestinal injury and symptoms of gastrointestinal distress. Exp Physiol 2022; 107:326-336. [PMID: 35224797 DOI: 10.1113/ep090266] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/22/2022] [Indexed: 11/08/2022]
Abstract
NEW FINDING What is the central question of this study? What is the effect of hypobaric hypoxia on markers of exercise-induced intestinal injury and symptoms of GI distress? What is the main finding and its importance? Exercise performed at 4300 m of simulated altitude increased I-FABP, CLDN-3, and LBP which together suggest that exercise-induced intestinal injury may be aggravated by concurrent hypoxic exposure. Increases in I-FABP, LBP, CLDN-3 were correlated to exercise-induced GI symptoms, providing some evidence of a link between intestinal barrier injury and symptoms of GI distress. ABSTRACT We sought to determine the effect of exercise in hypobaric hypoxia on markers of intestinal injury and gastrointestinal (GI) symptoms. Using a randomized and counterbalanced design, 9 males completed two experimental trials: one at local altitude of 1585 m (NORM) and one at 4300 m of simulated hypobaric hypoxia (HYP). Participants performed 60-minutes of cycling at a workload that elicited 65% of their NORM VO2 max. GI symptoms were assessed before and every 15-minutes during exercise. Pre- and post-exercise blood samples were assessed for intestinal fatty acid binding protein (I-FABP), claudin-3 (CLDN-3), and lipopolysaccharide binding protein (LBP). All participants reported at least one GI symptom in HYP compared to just 1 participant in NORM. I-FABP significantly increased from pre- to post-exercise in HYP (708±191 to 1215±518 pg mL-1 ; p = 0.011, d = 1.10) but not NORM (759±224 to 828±288 pg mL-1 ; p>0.99, d = 0.27). CLDN-3 significantly increased from pre- to post-exercise in HYP (13.8±0.9 to 15.3±1.2 ng mL-1 ; p = 0.003, d = 1.19) but not NORM (13.7±1.8 to 14.2±1.6 ng mL-1 ; p = .435, d = 0.45). LBP significantly increased from pre- to post-exercise in HYP (10.8±1.2 to 13.9±2.8 μg mL-1 ; p = 0.006, d = 1.12) but not NORM (11.3±1.1 to 11.7±0.9 μg mL-1 ; p>0.99, d = 0.32). I-FABP (d = 0.85), CLDN-3 (d = 0.95), and LBP (d = 0.69) were all significantly higher post-exercise in HYP compared to NORM (p≤0.05). Overall GI discomfort was significantly correlated to ΔI-FABP (r = 0.71), ΔCLDN-3 (r = 0.70), and ΔLBP (r = 0.86). These data indicate that cycling exercise performed in hypobaric hypoxia can cause intestinal injury, which might cause some commonly reported GI symptoms. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zachary J McKenna
- Department of Health, Exercise and Sports Sciences, University of New Mexico Albuquerque, NM, USA
| | - Zachary J Fennel
- Department of Health, Exercise and Sports Sciences, University of New Mexico Albuquerque, NM, USA
| | - Quint N Berkemeier
- Department of Health, Exercise and Sports Sciences, University of New Mexico Albuquerque, NM, USA
| | - Roberto C Nava
- Harvard Medical School, Boston, MA, USA.,Research Division, Joslin Diabetes Center, Boston, MA, USA
| | - Fabiano T Amorim
- Department of Health, Exercise and Sports Sciences, University of New Mexico Albuquerque, NM, USA
| | - Michael R Deyhle
- Department of Health, Exercise and Sports Sciences, University of New Mexico Albuquerque, NM, USA
| | - Christine M Mermier
- Department of Health, Exercise and Sports Sciences, University of New Mexico Albuquerque, NM, USA
| |
Collapse
|
38
|
Gao J, Song G, Shen H, Wu Y, Zhao C, Zhang Z, Jiang Q, Li X, Ma X, Tan B, Yin Y. Allicin Improves Intestinal Epithelial Barrier Function and Prevents LPS-Induced Barrier Damages of Intestinal Epithelial Cell Monolayers. Front Immunol 2022; 13:847861. [PMID: 35185936 PMCID: PMC8854216 DOI: 10.3389/fimmu.2022.847861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/19/2022] [Indexed: 12/02/2022] Open
Abstract
Gut barrier disruption is the initial pathogenesis of various diseases. We previously reported that dietary allicin improves tight junction proteins in the endoplasmic reticulum stressed jejunum. However, whether the allicin benefits the gut barrier within mycotoxin or endotoxin exposure is unknown. In the present study, IPEC-J2 cell monolayers within or without deoxynivalenol (DON) or lipopolysaccharide (LPS) challenges were employed to investigate the effects of allicin on intestinal barrier function and explore the potential mechanisms. Results clarified that allicin at 2 μg/mL increased the viability, whereas the allicin higher than 10 μg/mL lowered the viability of IPEC-J2 cells via inhibiting cell proliferation. Besides, allicin increased trans-epithelial electric resistance (TEER), decreased paracellular permeability, and enhanced ZO-1 integrity of the IPEC-J2 cell monolayers. Finally, allicin supplementation prevented the LPS-induced barrier damages via activating Nrf2/HO-1 pathway-dependent antioxidant system. In conclusion, the present study strongly confirmed allicin as an effective nutrient to improve intestinal barrier function and prevent bacterial endotoxin-induced barrier damages.
Collapse
Affiliation(s)
- Jingxia Gao
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Guanzhong Song
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Haibo Shen
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yiming Wu
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Chongqi Zhao
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Zhuo Zhang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Qian Jiang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Qian Jiang,
| | - Xilong Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaokang Ma
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Bie Tan
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yulong Yin
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
39
|
McKenna ZJ, Gorini Pereira F, Gillum TL, Amorim FT, Deyhle MR, Mermier CM. High altitude exposures and intestinal barrier dysfunction. Am J Physiol Regul Integr Comp Physiol 2022; 322:R192-R203. [PMID: 35043679 DOI: 10.1152/ajpregu.00270.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gastrointestinal complaints are often reported during ascents to high altitude (> 2500 m), though their etiology is not known. One potential explanation is injury to the intestinal barrier which has been implicated in the pathophysiology of several diseases. High altitude exposures can reduce splanchnic perfusion and blood oxygen levels causing hypoxic and oxidative stress. These stressors might injure the intestinal barrier leading to consequences such as bacterial translocation and local/systemic inflammatory responses. The purpose of this mini review is to 1) discuss the impact of high-altitude exposures on intestinal barrier dysfunction, and 2) present medications and dietary supplements which may have relevant impacts on the intestinal barrier during high-altitude exposures. There is a small but growing body of evidence which shows that acute exposures to high altitudes can damage the intestinal barrier. Initial data also suggests that prolonged hypoxic exposures can compromise the intestinal barrier through alterations in immunological function, microbiota, or mucosal layers. Exertion may worsen high-altitude related intestinal injury via additional reductions in splanchnic circulation and greater hypoxemia. Collectively these responses can result in increased intestinal permeability and bacterial translocation causing local and systemic inflammation. More research is needed to determine the impact of various medications and dietary supplements on the intestinal barrier during high-altitude exposures.
Collapse
Affiliation(s)
- Zachary J McKenna
- Department of Health, Exercise, and Sport Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Felipe Gorini Pereira
- Department of Kinesiology, Indiana University Bloomington, Bloomington, IN, United States
| | - Trevor L Gillum
- Department of Kinesiology, California Baptist University, Riverside, CA, United States
| | - Fabiano Trigueiro Amorim
- Department of Health, Exercise, and Sport Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Michael R Deyhle
- Department of Health, Exercise, and Sport Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Christine M Mermier
- Department of Health, Exercise, and Sport Sciences, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|