1
|
Peng W, Zheng Y, Wei M, Wang Y, Wang Y, Xiao M, Zhang R. Effects of rumen fluid and molasses on the nutrient composition, fermentation quality, and microflora of Caragana korshinskii Kom. silage. Sci Rep 2024; 14:31763. [PMID: 39738286 PMCID: PMC11685436 DOI: 10.1038/s41598-024-82621-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/06/2024] [Indexed: 01/01/2025] Open
Abstract
The aim of this experiment was to investigate the effects of rumen fluid and molasses on the nutrient composition, fermentation quality, and microflora of Caragana korshinskii Kom. The trial included four treatments: a control group (CK) without additives and experimental groups supplemented with 7% rumen fluid (R), 4% molasses (M), and 7% rumen fluid + 4% molasses (RM). 15 days and 60 days of ensiling. The results showed that the addition of R, M, and RM reduced the contents of neutral detergent fibre (NDF) and acid detergent fibre (ADF). The addition of M and RM increased the content of water soluble carbohydrates (WSC) but increased the loss of DM. The addition of M and RM promoted rapid pH reduction below 4.2. At 60 days of ensiling, the addition of R alone promoted the production of lactic acid (LA). The addition of R and RM increased microbial diversity. The addition of RM slowed the rate at which Lactobacillus became the dominant genus and improved the ability of Enterobacter to compete for fermentable substrates. M and RM could increase microbial activity and promote metabolism. In general, the addition of M or RM improved the fermentation quality and nutritional value of C. korshinskii silage.
Collapse
Affiliation(s)
- Wen Peng
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, 028000, China
| | - Yongjie Zheng
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, 028000, China
| | - Manlin Wei
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, 028000, China.
| | - Yajing Wang
- College of Animal Science and Technology, China Agricultural University, Beijing, 100091, China
| | - Yuxiang Wang
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, 028000, China
| | - Ming Xiao
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, 028000, China
| | - Runze Zhang
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, 028000, China
| |
Collapse
|
2
|
Nieto JA, Rosés C, Viadel B, Gallego E, Romo-Hualde A, Milagro FI, Barceló A, Virto R, Saldaña G, Luengo E. Sourdough bread enriched with exopolysaccharides and gazpacho by-products modulates in vitro the microbiota dysbiosis. Int J Biol Macromol 2024; 272:132906. [PMID: 38851991 DOI: 10.1016/j.ijbiomac.2024.132906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 05/16/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
Sourdough bread enriched with soluble fiber (by in-situ exopolysaccharides production) and insoluble fiber (by gazpacho by-products addition) showed prebiotic effects an in vitro dynamic colonic fermentation performance with obese volunteer's microbiota. Bifidobacterium population was maintained whereas Lactobacillus increased throughout the colonic sections. Conversely, Enterobacteriaceae and Clostridium groups clearly decreased. Specific bacteria associated with beneficial effects increased in the ascending colon (Lactobacillus fermentum, Lactobacillus paracasei, Bifidobacterium longum and Bifidobacterium adolescentis) whereas Eubacterium eligens, Alistipes senegalensis, Prevotella copri and Eubacterium desmolans increased in the transversal and descending colon. Additionally, Blautia faecis and Ruminococcus albus increased in the transversal colon, and Bifidobacterium longum, Roseburia faecis and Victivallis vadensis in the descending colon. Bifidobacterium and Lactobacillus fermented the in-situ exopolysaccharides and released pectins from gazpacho by-products, as well as cellulosic degraded bacteria. This increased the short and medium chain fatty acids. Acetic acid, as well as butyric acid, increased throughout the colonic tract, which showed greater increases only in the transversal and descending colonic segments. Conversely, propionic acid was slightly affected by the colonic fermentation. These results show that sourdough bread is a useful food matrix for the enrichment of vegetable by-products (or other fibers) in order to formulate products with microbiota modulatory capacities.
Collapse
Affiliation(s)
- Juan Antonio Nieto
- Centro Tecnológico Ainia, Parque Tecnológico de Valencia, E46980 Paterna, Spain; Bioactivity and Nutritional Immunology Group (BIOINUT), Faculty of Health Science, Universidad Internacional de Valencia (VIU), Calle Pintor Sorolla 21, E46002 Valencia, Spain.
| | - Carles Rosés
- Servei de Genòmica, Universitat Autònoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallés, Spain
| | - Blanca Viadel
- Centro Tecnológico Ainia, Parque Tecnológico de Valencia, E46980 Paterna, Spain
| | - Elisa Gallego
- Centro Tecnológico Ainia, Parque Tecnológico de Valencia, E46980 Paterna, Spain
| | - Ana Romo-Hualde
- Centre for Nutrition Research, Department of Nutrition, Food Sciences and Physiology, University of Navarra, 31008 Pamplona, Spain
| | - Fermín I Milagro
- Centre for Nutrition Research, Department of Nutrition, Food Sciences and Physiology, University of Navarra, 31008 Pamplona, Spain; Navarra Institute for Health Research (IdISNA), 31008 Pamplona, Spain; Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Anna Barceló
- Servei de Genòmica, Universitat Autònoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallés, Spain
| | - Raquel Virto
- Centro Nacional de Tecnología y Seguridad Alimentaria (CNTA), Carretera-Na134-km 53, San Adrian 31570, Navarra, Spain
| | - Guillermo Saldaña
- NOVAPAN S.L., Research & Development Department, 50014 Zaragoza, Spain
| | - Elisa Luengo
- NOVAPAN S.L., Research & Development Department, 50014 Zaragoza, Spain
| |
Collapse
|
3
|
Liu W, Du S, Sun L, Wang Z, Ge G, Jia Y. Study on Dynamic Fermentation of Oat Silage Assisted by Exogenous Fibrolytic Enzymes. PLANTS (BASEL, SWITZERLAND) 2023; 13:6. [PMID: 38202317 PMCID: PMC10780392 DOI: 10.3390/plants13010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024]
Abstract
Based on the low content of water-soluble carbohydrate (WSC) and lactic acid bacteria (LAB) attachment in oat raw materials, we assumed that the neutral detergent fiber (NDF) content of oat can be reduced by adding cellulase or xylanase. The concentration of metabolizable sugars will be increased, which will assist the oat's bacterial community in fermentation and obtain a better quality of oat silage. After wilting the oat, it was treated as follows: (1) distributed water (CK); (2) silages inoculated with xylanase (X); and (3) silages inoculated with cellulase (C), ensiling for 3, 7, 14, 30, and 60 days. Cellulase and xylanase treatments both alter the fermentation and nutritional quality of ensiled oat, resulting in lower NDF, acid detergent fiber (ADF), cellulose, and hemicellulose contents, increased lactic acid and acetic acid contents, and a significant decrease in ensiling environment pH. The bacterial community undergoes significant changes with cellulase and xylanase treatments, with a significant increase in Lactobacillus abundance in the C_14, X_30, C_30, X_60, and C_60 treatment groups, while Weissella abundance gradually decreases with longer ensiling times. Two exogenous fibrolytic enzymes also alter the bacterial diversity of ensiled oat, with different bacterial species and abundances observed in different treatment groups. Ensiled oat treated with cellulase and xylanase experiences significant changes in its own bacterial community, particularly in the abundance of Lactobacillus. These changes result in improved fermentation and nutritional quality of oat, but the higher metabolism levels observed after 60 days of ensiling with cellulase treatment may lead to energy loss.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010019, China; (W.L.); (S.D.); (Z.W.); (G.G.)
- Key Laboratory of Grassland Resources, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010019, China
- Department of Grass Science, Inner Mongolia Agricultural University, College of Grassland, Resources and Environment, South Campus, Hohhot 010019, China
| | - Shuai Du
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010019, China; (W.L.); (S.D.); (Z.W.); (G.G.)
- Key Laboratory of Grassland Resources, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010019, China
- Department of Grass Science, Inner Mongolia Agricultural University, College of Grassland, Resources and Environment, South Campus, Hohhot 010019, China
| | - Lin Sun
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, China;
| | - Zhijun Wang
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010019, China; (W.L.); (S.D.); (Z.W.); (G.G.)
- Key Laboratory of Grassland Resources, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010019, China
- Department of Grass Science, Inner Mongolia Agricultural University, College of Grassland, Resources and Environment, South Campus, Hohhot 010019, China
| | - Gentu Ge
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010019, China; (W.L.); (S.D.); (Z.W.); (G.G.)
- Key Laboratory of Grassland Resources, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010019, China
- Department of Grass Science, Inner Mongolia Agricultural University, College of Grassland, Resources and Environment, South Campus, Hohhot 010019, China
| | - Yushan Jia
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010019, China; (W.L.); (S.D.); (Z.W.); (G.G.)
- Key Laboratory of Grassland Resources, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010019, China
- Department of Grass Science, Inner Mongolia Agricultural University, College of Grassland, Resources and Environment, South Campus, Hohhot 010019, China
| |
Collapse
|
4
|
Effect of Novel Aspergillus and Neurospora species-Based Additive on Ensiling Parameters and Biomethane Potential of Sugar Beet Leaves. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Research on additives that improve the quality of silages for an enhanced and sustainable biogas production are limited in the literature. Frequently used additives such as lactic acid bacteria enhance the quality of silages but have no significant effect on biogas yield. This study investigated the effect of a new enzymatic additive on the quality of ensiling and BMP of sugar beet leaves. Sugar beet leaves were ensiled with and without the additive (Aspergillus- and Neurospora-based additive) in ratios of 50:1 (A50:1), 150:1 (B150:1), and 500:1 (C500:1) (gsubstrate/gadditive) for 370 days at ambient temperature. Results showed that silages with additive had lower yeast activity and increased biodegradability compared to silages without additive (control). The additive increased the BMP by 45.35%, 24.23%, and 21.69% in silages A50:1, B150:1, and C500:1 respectively, compared to silages without additive (control). Although the novel enzyme is in its early stage, the results indicate that it has a potential for practical application at an additive to substrate ratio (g/g) of 1:50. The use of sugar beet leaves and the novel enzyme for biogas production forms part of the circular economy since it involves the use of wastes for clean energy production.
Collapse
|