1
|
Arya AK, Hu K, Chen A, Olivas-Garcia Y, Coyne C, Tanaka H, Liu C, Doucet J, Chan T, Hu B. INTRACOLON COOLING INCREASES SURVIVAL RATE IN THE RAT MODEL OF LETHAL HEMORRHAGE. Shock 2023; 60:762-770. [PMID: 37878475 PMCID: PMC10840875 DOI: 10.1097/shk.0000000000002234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
ABSTRACT Background: The objective of this study was to investigate whether transrectal intracolon (TRIC) cooling can prolong the survival duration in a rat hemorrhagic shock (HS) model. Methods: A lethal HS was induced by bleeding 47% of the total blood volume. A TRIC device was placed into the colon to maintain the intracolon temperature either at 37°C (TRIC37) or at 10°C (TRIC10) post-HS. In the surface cooling (SC) rats, the body temperatures were maintained at the same level as the esophageal temperature of the TRIC10 rats. A separated group of TRIC10 rats were resuscitated (Res) at 90 min post-HS. A total of six groups were as follows: (i) Sham TRIC37 (n = 5), (ii) Sham TRIC10 (n = 5), (iii) HS TRIC37 (n = 5), (iv) HS TRIC10 (n = 6), (v) HS SC (n = 6), and (vi) HS TRIC10 + Res (n = 6). Results: An average post-HS survival time was 18.4 ± 9.4 min in HS TRIC37 and 82 ± 27.82 min in the HS SC group. In striking contrast, the HS TRIC10 group exhibited an average survival time of 150.2 ± 66.43 min. The post-HS blood potassium level rose significantly in the HS TRIC37 and HS SC, whereas it remained unchanged in the TRIC10 groups. Post-HS intestinal damage occurred in HS TRIC37 and HS SC groups but virtually absent in HS TRIC10 groups. After resuscitation at 90 min post-HS, all HS TRIC10 rats were fully recovered from the lethal HS. Conclusions: TRIC10 reversed the high blood potassium level, prevented the intestinal damage, and prolonged the survival duration by sixfold relative to normothermia and by twofold compared with SC post-HS. All TRIC10 rats were successfully resuscitated at 90 min post-HS.
Collapse
Affiliation(s)
- Awadhesh K Arya
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kurt Hu
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Alice Chen
- Departments of Emergency Medicine, University of California San Diego, San Diego, CA, USA
| | - Yamileck Olivas-Garcia
- Departments of Emergency Medicine, University of California San Diego, San Diego, CA, USA
| | - Christopher Coyne
- Departments of Emergency Medicine, University of California San Diego, San Diego, CA, USA
| | - Hideaki Tanaka
- Departments of Emergency Medicine, University of California San Diego, San Diego, CA, USA
| | - Chunli Liu
- Departments of Emergency Medicine, University of California San Diego, San Diego, CA, USA
| | - Jay Doucet
- Department of Surgery, Division of Trauma, University of California San Diego, San Diego, CA, USA
| | - Theodore Chan
- Departments of Emergency Medicine, University of California San Diego, San Diego, CA, USA
| | - Bingren Hu
- Departments of Emergency Medicine, University of California San Diego, San Diego, CA, USA
- Department of Neurosciences, University of California San Diego, San Diego, CA, USA
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Franko JJ, Vu MM, Parsons ME, Conner JR, Lammers DT, Ieronimakis N, Reynolds GD, Eckert MJ, Bingham JR. Adenosine, lidocaine, and magnesium for attenuating ischemia reperfusion injury from resuscitative endovascular balloon occlusion of the aorta in a porcine model. J Trauma Acute Care Surg 2022; 92:631-639. [PMID: 34840271 DOI: 10.1097/ta.0000000000003482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Minimally invasive resuscitative endovascular balloon occlusion of the aorta (REBOA) following noncompressible hemorrhage results in significant ischemia reperfusion injury (IRI). Adverse outcomes from IRI include organ dysfunction and can result in profound hemodynamic and molecular compromise. We hypothesized that adenosine, lidocaine, and magnesium (ALM) attenuates organ injury and inflammation responses following REBOA IRI in a porcine model of hemorrhage. METHODS Animals underwent a 20% controlled hemorrhage followed by 45 minutes of supraceliac balloon occlusion. They were randomized into two groups: control (n = 9) and ALM intervention (n = 9) to include a posthemorrhage, pre-REBOA bolus (200 mL of 3% NaCl ALM) followed by a continuous drip (2 mL/kg per hour of 0.9% NaCl ALM) during the 4-hour resuscitative period. Primary outcomes included hemodynamic parameters, gene expression of inflammatory signaling molecules, and plasma concentrations of select cytokines and chemokines. RESULTS The ALM cohort demonstrated a significant reduction in cardiac output and cardiac index. Plasma concentrations of interleukin 2 and interleukin 10 were significantly lower 3 hours post-REBOA in animals treated with ALM versus vehicle. Interleukin 4 levels in plasma were also lower with ALM at 3 and 4 hours post-REBOA (p < 0.05). Liver expression of IL1RN, MTOR, and LAMP3 messenger RNA was significantly lower with ALM as compared with the vehicle. No significant difference in large bowel gene expression was observed between treatments. CONCLUSION In a porcine model of hemorrhage, ALM treatment mitigated inflammatory responses early during post-REBOA resuscitation. Our findings suggest that ALM use with trauma may reduce inflammatory injury and improve outcomes related to REBOA utilization.
Collapse
Affiliation(s)
- Jace J Franko
- From the Department of Surgery (J.J.F., M.M.V., M.E.P., J.R.C., D.T.L., N.I., G.D.R., J.R.B.), Madigan Army Medical Center, Tacoma, Washington; and Department of Surgery (M.J.E.), University of North Carolina Medical Center, Chapel Hill, North Carolina
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Crawford RS, Liu Y, Yuan D, Liu C, Sarkar R, Hu B. Transrectal intracolon cooling prevents paraplegia and mortality in a rat model of aortic occlusion-induced spinal cord ischemia. JVS Vasc Sci 2021; 2:181-193. [PMID: 34761238 PMCID: PMC8567003 DOI: 10.1016/j.jvssci.2021.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/27/2021] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Spinal cord ischemia-reperfusion injury (SC-IRI) occurs in many medical conditions such as aneurysm surgical repair but no treatment of SC-IRI is available in clinical practice. The objective of the present study was to develop a novel medical device for the treatment of SC-IRI. METHODS A rat model of SC-IRI was used. A novel transrectal intracolon (TRIC) temperature management device was developed to maintain an intracolon wall temperature at either 37°C (TRIC37°C) or 12°C (TRIC12°C). The upper body temperature was maintained as close as possible to 37°C in both groups. A 2F Fogarty balloon catheter was inserted via the left common carotid artery to block the distal aortic blood flow to the spinal cord. The proximal blood pressure was controlled by the withdrawal and infusion of blood via the jugular vein catheter, such that the distal tail artery blood pressure was maintained at ∼10 mmHg for 13 and 20 minutes, respectively. Next, the balloon was deflated, and TRIC temperature management was continued for an additional 30 minutes to maintain the colon wall temperature at either 37°C or 12°C during the reperfusion period. RESULTS All the rats subjected to 13 minutes of spinal cord ischemia in the TRIC37°C group had developed paraplegia during the postischemic phase. In striking contrast, TRIC at 12°C completely prevented the paraplegia, dramatically improved the arterial blood gas parameters, and avoided the histopathologic injuries to the spinal cord in rats subjected to 13 minutes of spinal cord ischemia. Furthermore, TRIC12°C allowed for the extension of the ischemia duration from 13 minutes to 20 minutes, with significantly reduced functional deficits. CONCLUSIONS Directly cooling the intestine focally with the TRIC device offered an exceptional survival rate and functional improvement after aortic occlusion-induced spinal cord ischemia.
Collapse
Affiliation(s)
- Robert S. Crawford
- Departments of Anesthesiology and Surgery, University of Maryland School of Medicine, Baltimore, Md
| | - Yang Liu
- Departments of Anesthesiology and Surgery, University of Maryland School of Medicine, Baltimore, Md
| | - Dong Yuan
- Departments of Anesthesiology and Surgery, University of Maryland School of Medicine, Baltimore, Md
| | - Chunli Liu
- Veterans Affairs Maryland Health Center System, Baltimore, Md
| | - Rajabrata Sarkar
- Departments of Anesthesiology and Surgery, University of Maryland School of Medicine, Baltimore, Md
| | - Bingren Hu
- Departments of Anesthesiology and Surgery, University of Maryland School of Medicine, Baltimore, Md
- Veterans Affairs Maryland Health Center System, Baltimore, Md
| |
Collapse
|