1
|
Li F, Hu C, Su W, Liang H, Xiao F, Liu J, Tan Y, Yang S. A self-cascade system based on Ag nanoparticle/single-walled carbon nanotube nanocomposites as an enzyme mimic for ultrasensitive detection of L-cysteine. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023. [PMID: 37366585 DOI: 10.1039/d3ay00445g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
L-Cysteine, widely used in medicine and the food industry, is of great essentiality to organisms and the food quality. Given that current detection approaches require exacting lab conditions and tedious sample treatment, there is a pressing demand for developing a method that possesses advantages of user friendliness, prominent performance, and cost-effectiveness. Herein, a self-cascade system was developed for the fluorescence detection of L-cysteine based on the ingenious performance of Ag nanoparticle/single-walled carbon nanotube nanocomposites (AgNP/SWCNTs) and DNA-templated Ag nanoclusters (DNA-AgNCs). The fluorescence of DNA-AgNCs could be quenched on account of the adsorption of DNA-AgNCs on AgNP/SWCNTs by π-π stacking. With the cooperation of Fe2+, AgNP/SWCNTs with oxidase and peroxidase-like activities could catalyze the oxidation of L-cysteine to produce cystine and hydrogen peroxide (H2O2) and then break the O-O bond of H2O2 to generate a hydroxyl radical (·OH), which could cleave the DNA strand into different sequence fragments which subsequently peeled off from the AgNP/SWCNTs, resulting in a "turn-on" fluorescence response. In this paper, AgNP/SWCNTs with multi-enzyme activities was synthesized enabling the reaction to proceed in just one step. The successful preliminary applications for the L-cysteine detection in pharmaceutical, juice beverage, and serum samples indicated that the developed method exhibited great potential in medical diagnosis, food monitoring, and the biochemical field, which also broadened the horizon for follow-up research.
Collapse
Affiliation(s)
- Feifei Li
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Congcong Hu
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Wenen Su
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Hao Liang
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Fubing Xiao
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Jinquan Liu
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Yan Tan
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Shengyuan Yang
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
2
|
Assi N, Rypar T, Macka M, Adam V, Vaculovicova M. Microfluidic paper-based fluorescence sensor for L-homocysteine using a molecularly imprinted polymer and in situ-formed fluorescent quantum dots. Talanta 2023; 255:124185. [PMID: 36634429 DOI: 10.1016/j.talanta.2022.124185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 01/07/2023]
Abstract
Microfluidic paper-based analytical devices modified with molecularly imprinted polymers (μPADs@MIPs) were developed for fluorescent detection of targeted thiols via in situ UV-induced formation of quantum dots (μPADs@MIPs@QDs). The selectivity enhancement by the MIP layer formed on the filter paper surface was demonstrated for the isolation of L-homocysteine from wine. Followed by the addition of metal precursors solution (Zn/Cd/Cu) and UV irradiation, fluorescent quantum dots were formed thus enabling quantitative detection of the thiol (serving as a QD capping agent). The effect of different semiconductors was investigated to achieve a lower band gap and higher fluorescence intensity. Increasing fluorescence intensity in the presence of thiol groups was obtained for the following precursors mixture composition: ZnCdCu/S > ZnCd/S > ZnCu/S > ZnS. The proposed method has a good relationship between the fluorescence intensity of ZnCdCu/S QDs and L-homocysteine in a linear range from 0.74 to 7.40 μM with a limit of detection (LOD) and quantification (LOQ) of 0.51 and 1.71 μM respectively. This method was applied for the determination of L-homocysteine in white wine with RSD under 6.37%.
Collapse
Affiliation(s)
- Navid Assi
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ 613 00, Brno, Czech Republic
| | - Tomas Rypar
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ 613 00, Brno, Czech Republic
| | - Mirek Macka
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ 613 00, Brno, Czech Republic
| | - Marketa Vaculovicova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ 613 00, Brno, Czech Republic.
| |
Collapse
|
3
|
Shellaiah M, Sun KW. Review on Carbon Dot-Based Fluorescent Detection of Biothiols. BIOSENSORS 2023; 13:335. [PMID: 36979547 PMCID: PMC10046571 DOI: 10.3390/bios13030335] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Biothiols, such as cysteine (Cys), homocysteine (Hcy), and glutathione (GSH), play a vital role in gene expression, maintaining redox homeostasis, reducing damages caused by free radicals/toxins, etc. Likewise, abnormal levels of biothiols can lead to severe diseases, such as Alzheimer's disease (AD), neurotoxicity, hair depigmentation, liver/skin damage, etc. To quantify the biothiols in a biological system, numerous low-toxic probes, such as fluorescent quantum dots, emissive organic probes, composited nanomaterials, etc., have been reported with real-time applications. Among these fluorescent probes, carbon-dots (CDs) have become attractive for biothiols quantification because of advantages of easy synthesis, nano-size, crystalline properties, low-toxicity, and real-time applicability. A CDs-based biothiols assay can be achieved by fluorescent "Turn-On" and "Turn-Off" responses via direct binding, metal complex-mediated detection, composite enhanced interaction, reaction-based reports, and so forth. To date, the availability of a review focused on fluorescent CDs-based biothiols detection with information on recent trends, mechanistic aspects, linear ranges, LODs, and real applications is lacking, which allows us to deliver this comprehensive review. This review delivers valuable information on reported carbon-dots-based biothiols assays, the underlying mechanism, their applications, probe/CDs selection, sensory requirement, merits, limitations, and future scopes.
Collapse
Affiliation(s)
| | - Kien Wen Sun
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
4
|
Anantha Lakshmi B, Sangubotla R, Kim J, Kim YJ. Vinyl-functionalized polyphenolic-carbon dot-based fluorometric turn-off-on biosensor for the dual detection of mercury and cysteine and their in vivo sensing in zebrafish larvae. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 282:121685. [PMID: 35908500 DOI: 10.1016/j.saa.2022.121685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/11/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
The fluorometric turn-off-on biosensor was developed for the ultra-sensitive detection of mercury (Hg2+) and cysteine (Cys) utilizing the highly fluorescent carbon dots (CDs). Herein, the sophisticated low-temperature reflux-mediated reaction was adopted using precursors namely citric acid (CA) and polyphenolic kaempferol (KMP) by using dimethylformamide (DMF) as a solvent. The resulting CDs (i.e., CKCDs) were in the highly negative charged groups (-OH) presented with a bright-orange fluorescence. These CKCDs were functionalized with 4-vinylaniline (4-VA) by employing EDC/NHS coupling reaction, which switched its photoluminescence (PL) towards the strong-blue colored emission and termed as V-CKCDs. The functionalized V-CKCDs can be capable enough to detect mercury via the strong electrostatic interactions between positively charged Hg2+ cations and negatively charged anions (-OH groups). Hence, an adequate fluorescence quenching was observed in V-CKCDs with the lowest concentrations of Hg2+ around 0.5 μM. Significantly, after adding the complex of V-CKCDs-Hg2+ to the Cys, the fluorescence enhancement was observed. This might be attributed from the strong interactions between Hg2+ in the fluorescence sensing system and thiol (-SH) moieties from the Cys. The developed V-CKCDs are highly sensitive for detecting Hg2+ and Cys, which showed detection limits of 10.6 and 42. 48 nM, respectively. Also, the in vivo studies were investigated in zebrafish larvae using V-CKCDs for the detection of Hg2+ and Cys. The V-CKCDs were investigated in the real water samples and human serum to detect Hg2+ and Cys, respectively.
Collapse
Affiliation(s)
- Buddolla Anantha Lakshmi
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-Daero, Seongnam, Gyeonggi-Do 13120, Republic of Korea
| | - Roopkumar Sangubotla
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam-Daero, Seongnam, Gyeonggi-Do 13120, Republic of Korea
| | - Jongsung Kim
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam-Daero, Seongnam, Gyeonggi-Do 13120, Republic of Korea
| | - Young-Joon Kim
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-Daero, Seongnam, Gyeonggi-Do 13120, Republic of Korea.
| |
Collapse
|
5
|
Nejdl L, Petera L, Šponer J, Zemánková K, Pavelicová K, Knížek A, Adam V, Vaculovičová M, Ivanek O, Ferus M. Quantum Dots in Peroxidase-like Chemistry and Formamide-Based Hot Spring Synthesis of Nucleobases. ASTROBIOLOGY 2022; 22:541-551. [PMID: 35333585 DOI: 10.1089/ast.2021.0099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Quantum dots (QDs) are usually seen as artificial semiconductor particles exhibiting optical and electronic properties interesting for nanotechnological applications. However, they may also play a role in prebiotic chemistry. Starting from zinc acetate, cadmium acetate, and mercaptosuccinic acid, we demonstrate the formation of ZnCd QDs upon UV irradiation in prebiotic liquid formamide. We show that ZnCd QDs are able to increase the yield of RNA nucleobase synthesis from formamide up to 300 times, suggesting they might have served as universal catalysts in a primordial milieu. Based on the experimentally observed peroxidase-like activity of ZnCd QDs upon irradiation with visible light, we propose that QDs could be relevant to a broad variety of processes relating to the emergence of terrestrial life.
Collapse
Affiliation(s)
- Lukáš Nejdl
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Lukáš Petera
- J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czech Republic
- Charles University in Prague, Faculty of Science, Prague, Czech Republic
| | - Judit Šponer
- Charles University in Prague, Faculty of Science, Prague, Czech Republic
| | - Kristýna Zemánková
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Kristýna Pavelicová
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Antonín Knížek
- J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czech Republic
- Charles University in Prague, Faculty of Science, Prague, Czech Republic
| | - Vojtěch Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Markéta Vaculovičová
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Ondřej Ivanek
- J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Ferus
- J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|