1
|
Restall BS, Haven NJM, Martell MT, Cikaluk BD, Wang J, Kedarisetti P, Tejay S, Adam BA, Sutendra G, Li X, Zemp RJ. Metabolic light absorption, scattering, and emission (MetaLASE) microscopy. SCIENCE ADVANCES 2024; 10:eadl5729. [PMID: 39423271 PMCID: PMC11488571 DOI: 10.1126/sciadv.adl5729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 09/13/2024] [Indexed: 10/21/2024]
Abstract
Optical imaging of metabolism can provide key information about health and disease progression in cells and tissues; however, current methods have lacked gold-standard information about histological structure. Conversely, histology and virtual histology methods have lacked metabolic contrast. Here, we present metabolic light absorption, scattering, and emission (MetaLASE) microscopy, which rapidly provides a virtual histology and optical metabolic readout simultaneously. Hematoxylin-like nucleic contrast and eosin-like cytoplasmic contrast are obtained using photoacoustic remote sensing and ultraviolet reflectance microscopy, respectively. The same ultraviolet source excites endogenous Nicotinamide adenine dinucleotide (phosphate), flavin adenine dinucleotide, and collagen autofluorescence, providing a map of optical redox ratios to visualize metabolic variations including in areas of invasive carcinoma. Benign chronic inflammation and glands also are seen to exhibit hypermetabolism. MetaLASE microscopy offers promise for future applications in intraoperative margin analysis and in research applications where greater insights into metabolic activity could be correlated with cell and tissue types.
Collapse
Affiliation(s)
- Brendon S. Restall
- Department of Electrical and Computer Engineering, University of Alberta, 116 Street & 85 Avenue, Edmonton, Alberta T6G 2R3, Canada
| | - Nathaniel J. M. Haven
- Department of Electrical and Computer Engineering, University of Alberta, 116 Street & 85 Avenue, Edmonton, Alberta T6G 2R3, Canada
| | - Matthew T. Martell
- Department of Electrical and Computer Engineering, University of Alberta, 116 Street & 85 Avenue, Edmonton, Alberta T6G 2R3, Canada
| | - Brendyn D. Cikaluk
- Department of Electrical and Computer Engineering, University of Alberta, 116 Street & 85 Avenue, Edmonton, Alberta T6G 2R3, Canada
| | - Joy Wang
- Department of Electrical and Computer Engineering, University of Alberta, 116 Street & 85 Avenue, Edmonton, Alberta T6G 2R3, Canada
| | - Pradyumna Kedarisetti
- Department of Electrical and Computer Engineering, University of Alberta, 116 Street & 85 Avenue, Edmonton, Alberta T6G 2R3, Canada
| | - Saymon Tejay
- Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Benjamin A. Adam
- Department of Laboratory Medicine and Pathology, University of Alberta, 8440-112 Street, Edmonton, Alberta T6G 2B7, Canada
| | - Gopinath Sutendra
- Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Xingyu Li
- Department of Electrical and Computer Engineering, University of Alberta, 116 Street & 85 Avenue, Edmonton, Alberta T6G 2R3, Canada
| | - Roger J. Zemp
- Department of Electrical and Computer Engineering, University of Alberta, 116 Street & 85 Avenue, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|
2
|
Maloca PM, Zarranz-Ventura J, Valmaggia P, Faludi B, Zelechowski M, Tufail A, Zentai NZ, Scholl HPN, Cattin PC. Validation of collaborative cyberspace virtual reality oculometry enhanced with near real-time spatial audio. Sci Rep 2023; 13:10076. [PMID: 37344554 DOI: 10.1038/s41598-023-37267-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 06/19/2023] [Indexed: 06/23/2023] Open
Abstract
Currently, most medical image data, such as optical coherence tomography (OCT) images, are displayed in two dimensions on a computer screen. Advances in computer information technology have contributed to the growing storage of these data in electronic form. However, the data are usually processed only locally on site. To overcome such hurdles, a cyberspace virtual reality (csVR) application was validated, in which interactive OCT data were presented simultaneously to geographically distant sites (Lucerne, London, and Barcelona) where three graders independently measured the ocular csVR OCT diameters. A total of 109 objects were measured, each three times, resulting in a total of 327 csVR measurements. A minor mean absolute difference of 5.3 µm was found among the 3 measurements of an object (standard deviation 4.2 µm, coefficient of variation 0.3% with respect to the mean object size). Despite the 5 h of online work, csVR was well tolerated and safe. Digital high-resolution OCT data can be remotely and collaboratively processed in csVR. With csVR, measurements and actions enhanced with spatial audio communication can be made consistently in near real time, even if the users are situated geographically far apart. The proposed visuo-auditory framework has the potential to further boost the convenience of digital medicine toward csVR precision and collaborative medicine.
Collapse
Affiliation(s)
- Peter M Maloca
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), 4031, Basel, Switzerland.
- Department of Ophthalmology, University Hospital Basel, 4031, Basel, Switzerland.
- Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK.
| | | | - Philippe Valmaggia
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), 4031, Basel, Switzerland
- Department of Ophthalmology, University Hospital Basel, 4031, Basel, Switzerland
- Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK
| | - Balázs Faludi
- Centre for Medical Image Analysis & Navigation, University of Basel, 4123, Allschwil-Basel, Switzerland
| | - Marek Zelechowski
- Centre for Medical Image Analysis & Navigation, University of Basel, 4123, Allschwil-Basel, Switzerland
| | - Adnan Tufail
- Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK
| | - Norbert Z Zentai
- Centre for Medical Image Analysis & Navigation, University of Basel, 4123, Allschwil-Basel, Switzerland
| | - Hendrik P N Scholl
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), 4031, Basel, Switzerland
- Department of Ophthalmology, University Hospital Basel, 4031, Basel, Switzerland
| | - Philippe C Cattin
- Centre for Medical Image Analysis & Navigation, University of Basel, 4123, Allschwil-Basel, Switzerland
| |
Collapse
|
3
|
Mukhangaliyeva L, Kocer S, Warren A, Bell K, Boktor M, Yavuz M, Abdel-Rahman E, Haji Reza P. Deformable mirror-based photoacoustic remote sensing (PARS) microscopy for depth scanning. BIOMEDICAL OPTICS EXPRESS 2022; 13:5643-5653. [PMID: 36733742 PMCID: PMC9872901 DOI: 10.1364/boe.471770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/09/2022] [Accepted: 09/19/2022] [Indexed: 05/02/2023]
Abstract
Optically shifting the focal plane to allow depth scanning of delicate biological structures and processes in their natural environment offers an appealing alternative to conventional mechanical scanning. Our technique uses a deformable mirror-based photoacoustic remote sensing microscopy (PARS) with a focus shifting of Δz ∼ 240 µm. We achieve this by integrating a deformable mirror that functions as a varifocal mirror for axial scanning. First, the system's focal shift capability was demonstrated with USAF resolution targets and carbon fiber phantoms, followed by in-vivo visualizations of blood vessels in chicken embryo chorioallantoic membrane (CAM). This work represents an initial step toward developing a non-contact, label-free, and aberration-free PARS imaging system with axial scanning capability.
Collapse
Affiliation(s)
- Lyazzat Mukhangaliyeva
- PhotoMedicine Labs, Department of Systems Design Engineering, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1, Canada
| | - Samed Kocer
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1, Canada
| | - Alkris Warren
- PhotoMedicine Labs, Department of Systems Design Engineering, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1, Canada
| | - Kevan Bell
- PhotoMedicine Labs, Department of Systems Design Engineering, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1, Canada
| | - Marian Boktor
- PhotoMedicine Labs, Department of Systems Design Engineering, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1, Canada
| | - Mustafa Yavuz
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1, Canada
| | - Eihab Abdel-Rahman
- Department of Systems Design Engineering, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1, Canada
| | - Parsin Haji Reza
- PhotoMedicine Labs, Department of Systems Design Engineering, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
4
|
Pellegrino N, Ecclestone BR, Dinakaran D, van Landeghem F, Fieguth P, Haji Reza P. Time-domain feature extraction for target specificity in photoacoustic remote sensing microscopy. OPTICS LETTERS 2022; 47:3952-3955. [PMID: 35913356 DOI: 10.1364/ol.457142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Photoacoustic remote sensing (PARS) microscopy is an emerging label-free optical absorption imaging modality. PARS operates by capturing nanosecond-scale optical fluctuations produced by photoacoustic pressures. These time-domain (TD) variations are usually projected by amplitude to determine optical absorption magnitude. However, valuable details on a target's material properties (e.g., density, speed of sound) are contained within the TD signals. This work uses a novel, to the best of our knowledge, clustering method to learn TD features, based on signal shape, which relate to underlying material traits. A modified K-means method is used to cluster TD data, capturing representative signal features. These features are then used to form virtual colorizations which may highlight tissues based on their underlying material properties. Applied in fresh resected murine brain tissue, colorized visualizations highlight distinct regions of tissue. This may potentially facilitate differentiation of tissue constituents (e.g., myelinated and unmyelinated axons, cell nuclei) in a single acquisition.
Collapse
|
5
|
Virtual histological staining of label-free total absorption photoacoustic remote sensing (TA-PARS). Sci Rep 2022; 12:10296. [PMID: 35717539 PMCID: PMC9206643 DOI: 10.1038/s41598-022-14042-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/31/2022] [Indexed: 01/21/2023] Open
Abstract
Histopathological visualizations are a pillar of modern medicine and biological research. Surgical oncology relies exclusively on post-operative histology to determine definitive surgical success and guide adjuvant treatments. The current histology workflow is based on bright-field microscopic assessment of histochemical stained tissues and has some major limitations. For example, the preparation of stained specimens for brightfield assessment requires lengthy sample processing, delaying interventions for days or even weeks. Therefore, there is a pressing need for improved histopathology methods. In this paper, we present a deep-learning-based approach for virtual label-free histochemical staining of total-absorption photoacoustic remote sensing (TA-PARS) images of unstained tissue. TA-PARS provides an array of directly measured label-free contrasts such as scattering and total absorption (radiative and non-radiative), ideal for developing H&E colorizations without the need to infer arbitrary tissue structures. We use a Pix2Pix generative adversarial network to develop visualizations analogous to H&E staining from label-free TA-PARS images. Thin sections of human skin tissue were first virtually stained with the TA-PARS, then were chemically stained with H&E producing a one-to-one comparison between the virtual and chemical staining. The one-to-one matched virtually- and chemically- stained images exhibit high concordance validating the digital colorization of the TA-PARS images against the gold standard H&E. TA-PARS images were reviewed by four dermatologic pathologists who confirmed they are of diagnostic quality, and that resolution, contrast, and color permitted interpretation as if they were H&E. The presented approach paves the way for the development of TA-PARS slide-free histological imaging, which promises to dramatically reduce the time from specimen resection to histological imaging.
Collapse
|
6
|
Ecclestone BR, Bell K, Sparkes S, Dinakaran D, Mackey JR, Haji Reza P. Label-free complete absorption microscopy using second generation photoacoustic remote sensing. Sci Rep 2022; 12:8464. [PMID: 35589763 PMCID: PMC9120477 DOI: 10.1038/s41598-022-11235-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/14/2022] [Indexed: 11/24/2022] Open
Abstract
In the past decades, absorption modalities have emerged as powerful tools for label-free functional and structural imaging of cells and tissues. Many biomolecules present unique absorption spectra providing chromophore-specific information on properties such as chemical bonding, and sample composition. As chromophores absorb photons the absorbed energy is emitted as photons (radiative relaxation) or converted to heat and under specific conditions pressure (non-radiative relaxation). Modalities like fluorescence microscopy may capture radiative relaxation to provide contrast, while modalities like photoacoustic microscopy may leverage non-radiative heat and pressures. Here we show an all-optical non-contact total-absorption photoacoustic remote sensing (TA-PARS) microscope, which can capture both radiative and non-radiative absorption effects in a single acquisition. The TA-PARS yields an absorption metric proposed as the quantum efficiency ratio (QER), which visualizes a biomolecule’s proportional radiative and non-radiative absorption response. The TA-PARS provides label-free visualization of a range of biomolecules enabling convincing analogues to traditional histochemical staining of tissues, effectively providing label-free Hematoxylin and Eosin (H&E)-like visualizations. These findings establish an effective all-optical non-contact total-absorption microscope for label-free inspection of biological materials.
Collapse
Affiliation(s)
- Benjamin R Ecclestone
- PhotoMedicine Labs, Department of System Design Engineering, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1, Canada.,IllumiSonics Inc, 22 King Street South, Suite 300, Waterloo, ON, N2J 1N8, Canada
| | - Kevan Bell
- PhotoMedicine Labs, Department of System Design Engineering, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1, Canada.,IllumiSonics Inc, 22 King Street South, Suite 300, Waterloo, ON, N2J 1N8, Canada
| | - Sarah Sparkes
- PhotoMedicine Labs, Department of System Design Engineering, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1, Canada
| | - Deepak Dinakaran
- Department of Oncology, Cross Cancer Institute, University of Alberta, 116 St & 85 Ave, Edmonton, AB, T6G 2V1, Canada
| | - John R Mackey
- Department of Oncology, Cross Cancer Institute, University of Alberta, 116 St & 85 Ave, Edmonton, AB, T6G 2V1, Canada
| | - Parsin Haji Reza
- PhotoMedicine Labs, Department of System Design Engineering, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
7
|
Liu Y, Levenson RM, Jenkins MW. Slide Over: Advances in Slide-Free Optical Microscopy as Drivers of Diagnostic Pathology. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:180-194. [PMID: 34774514 PMCID: PMC8883436 DOI: 10.1016/j.ajpath.2021.10.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/12/2021] [Accepted: 10/18/2021] [Indexed: 02/03/2023]
Abstract
Conventional analysis using clinical histopathology is based on bright-field microscopy of thinly sliced tissue specimens. Although bright-field microscopy is a simple and robust method of examining microscope slides, the preparation of the slides needed is a lengthy and labor-intensive process. Slide-free histopathology, however, uses direct imaging of intact, minimally processed tissue samples using advanced optical-imaging systems, bypassing the extended workflow now required for the preparation of tissue sections. This article explains the technical basis of slide-free microscopy, reviews common slide-free optical microscopy techniques, and discusses the opportunities and challenges involved in clinical implementation.
Collapse
Affiliation(s)
- Yehe Liu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Richard M. Levenson
- Department of Pathology and Laboratory Medicine, University of California–Davis, Sacramento, California,Address correspondence to Richard M. Levenson, M.D., UC Davis Health, Path Building, 4400 V St., Sacramento, CA 95817; or Michael W. Jenkins, Ph.D., 2109 Adelbert Rd., Wood Bldg., WG28, Cleveland, OH 44106.
| | - Michael W. Jenkins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio,Address correspondence to Richard M. Levenson, M.D., UC Davis Health, Path Building, 4400 V St., Sacramento, CA 95817; or Michael W. Jenkins, Ph.D., 2109 Adelbert Rd., Wood Bldg., WG28, Cleveland, OH 44106.
| |
Collapse
|
8
|
OCT-Guided Surgery for Gliomas: Current Concept and Future Perspectives. Diagnostics (Basel) 2022; 12:diagnostics12020335. [PMID: 35204427 PMCID: PMC8871129 DOI: 10.3390/diagnostics12020335] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 02/01/2023] Open
Abstract
Optical coherence tomography (OCT) has been recently suggested as a promising method to obtain in vivo and real-time high-resolution images of tissue structure in brain tumor surgery. This review focuses on the basics of OCT imaging, types of OCT images and currently suggested OCT scanner devices and the results of their application in neurosurgery. OCT can assist in achieving intraoperative precision identification of tumor infiltration within surrounding brain parenchyma by using qualitative or quantitative OCT image analysis of scanned tissue. OCT is able to identify tumorous tissue and blood vessels detection during stereotactic biopsy procedures. The combination of OCT with traditional imaging such as MRI, ultrasound and 5-ALA fluorescence has the potential to increase the safety and accuracy of the resection. OCT can improve the extent of resection by offering the direct visualization of tumor with cellular resolution when using microscopic OCT contact probes. The theranostic implementation of OCT as a part of intelligent optical diagnosis and automated lesion localization and ablation could achieve high precision, automation and intelligence in brain tumor surgery. We present this review for the increase of knowledge and formation of critical opinion in the field of OCT implementation in brain tumor surgery.
Collapse
|