1
|
Li W, Xu M, Gao J, Zhang X, Huang H, Zhao R, Zhu X, Yang Y, Luo L, Chen M, Ji H, Zheng L, Wang X, Huang W. Large-Scale Ultra-Robust MoS 2 Patterns Directly Synthesized on Polymer Substrate for Flexible Sensing Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207447. [PMID: 36353895 DOI: 10.1002/adma.202207447] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Synthesis of large-area patterned MoS2 is considered the principle base for realizing high-performance MoS2 -based flexible electronic devices. Patterning and transferring MoS2 films to target flexible substrates, however, require conventional multi-step photolithography patterning and transferring process, despite tremendous progress in the facilitation of practical applications. Herein, an approach to directly synthesize large-scale MoS2 patterns that combines inkjet printing and thermal annealing is reported. An optimal precursor ink is prepared that can deposit arbitrary patterns on polyimide films. By introducing a gas atmosphere of argon/hydrogen (Ar/H2 ), thermal treatment at 350 °C enables an in situ decomposition and crystallization in the patterned precursors and, consequently, results in the formation of MoS2 . Without complicated processes, patterned MoS2 is obtained directly on polymer substrate, exhibiting superior mechanical flexibility and durability (≈2% variation in resistance over 10,000 bending cycles), as well as excellent chemical stability, which is attributed to the generated continuous and thin microstructures, as well as their strong adhesion with the substrate. As a step further, this approach is employed to manufacture various flexible sensing devices that are insensitive to body motions and moisture, including temperature sensors and biopotential sensing systems for real-time, continuously monitoring skin temperature, electrocardiography, and electromyography signals.
Collapse
Affiliation(s)
- Weiwei Li
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Manzhang Xu
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Jiuwei Gao
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Xiaoshan Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - He Huang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Ruoqing Zhao
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Xigang Zhu
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Yabao Yang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Lei Luo
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Mengdi Chen
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Hongjia Ji
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Lu Zheng
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Xuewen Wang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
- Key Laboratory of Flexible Electronics(KLoFE)and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800, China
| |
Collapse
|
2
|
Mukundan A, Tsao YM, Artemkina SB, Fedorov VE, Wang HC. Growth Mechanism of Periodic-Structured MoS 2 by Transmission Electron Microscopy. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 12:135. [PMID: 35010085 PMCID: PMC8796029 DOI: 10.3390/nano12010135] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/17/2021] [Accepted: 12/30/2021] [Indexed: 12/28/2022]
Abstract
Molybdenum disulfide (MoS2) was grown on a laser-processed periodic-hole sapphire substrate through chemical vapor deposition. The main purpose was to investigate the mechanism of MoS2 growth in substrate with a periodic structure. By controlling the amount and position of the precursor, adjusting the growth temperature and time, and setting the flow rate of argon gas, MoS2 grew in the region of the periodic holes. A series of various growth layer analyses of MoS2 were then confirmed by Raman spectroscopy, photoluminescence spectroscopy, and atomic force microscopy. Finally, the growth mechanism was studied by transmission electron microscopy (TEM). The experimental results show that in the appropriate environment, MoS2 can be successfully grown on substrate with periodic holes, and the number of growth layers can be determined through measurements. By observing the growth mechanism, composition analysis, and selected area electron diffraction diagram by TEM, we comprehensively understand the growth phenomenon. The results of this research can serve as a reference for the large-scale periodic growth of MoS2. The production of periodic structures by laser drilling is advantageous, as it is relatively simpler than other methods.
Collapse
Affiliation(s)
- Arvind Mukundan
- Department of Mechanical Engineering, Advanced Institute of Manufacturing with High Tech Innovations (AIM-HI), and Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, 168, University Rd., Min Hsiung, Chia Yi 62102, Taiwan; (A.M.); (Y.-M.T.)
| | - Yu-Ming Tsao
- Department of Mechanical Engineering, Advanced Institute of Manufacturing with High Tech Innovations (AIM-HI), and Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, 168, University Rd., Min Hsiung, Chia Yi 62102, Taiwan; (A.M.); (Y.-M.T.)
| | - Sofya B. Artemkina
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (S.B.A.); (V.E.F.)
- Department of Natural Sciences, Novosibirsk State University, 1 Pirogova Str., 630090 Novosibirsk, Russia
| | - Vladimir E. Fedorov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (S.B.A.); (V.E.F.)
- Department of Natural Sciences, Novosibirsk State University, 1 Pirogova Str., 630090 Novosibirsk, Russia
| | - Hsiang-Chen Wang
- Department of Mechanical Engineering, Advanced Institute of Manufacturing with High Tech Innovations (AIM-HI), and Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, 168, University Rd., Min Hsiung, Chia Yi 62102, Taiwan; (A.M.); (Y.-M.T.)
| |
Collapse
|