1
|
Köhler M, Nacarino-Meneses C, Cardona JQ, Arnold W, Stalder G, Suchentrunk F, Moyà-Solà S. Insular giant leporid matured later than predicted by scaling. iScience 2023; 26:107654. [PMID: 37694152 PMCID: PMC10485033 DOI: 10.1016/j.isci.2023.107654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/23/2023] [Accepted: 08/15/2023] [Indexed: 09/12/2023] Open
Abstract
The island syndrome describes morphological, behavioral, and life history traits that evolve in parallel in endemic insular organisms. A basic axiom of the island syndrome is that insular endemics slow down their pace of life. Although this is already confirmed for insular dwarfs, a slow life history in giants may not be adaptive, but merely a consequence of increasing body size. We tested this question in the fossil insular giant leporid Nuralagus rex. Using bone histology, we constructed both a continental extant taxon model derived from experimentally fluorochrome-labeled Lepus europaeus to calibrate life history events, and a growth model for the insular taxon. N. rex grew extremely slowly and delayed maturity well beyond predictions from continental phylogenetically corrected scaling models. Our results support the life history axiom of the island syndrome as generality for insular mammals, regardless of whether they have evolved into dwarfs or giants.
Collapse
Affiliation(s)
- Meike Köhler
- ICREA Pg. Lluís Companys 23, 08010 Barcelona, Spain
- ICP Institut Català de Paleontologia Miquel Crusafont, Edifici Z, Universitat Autònoma de Barcelona, C/ de Les Columnes, s/n., 08193 Bellaterra, Barcelona, Spain
- BABVE (Departament de Biologia Animal i d’Ecologia) Universitat Autònoma de Barcelona, 08193 Cerdanyola, Spain
| | - Carmen Nacarino-Meneses
- ICP Institut Català de Paleontologia Miquel Crusafont, Edifici Z, Universitat Autònoma de Barcelona, C/ de Les Columnes, s/n., 08193 Bellaterra, Barcelona, Spain
| | - Josep Quintana Cardona
- ICP Institut Català de Paleontologia Miquel Crusafont, Edifici Z, Universitat Autònoma de Barcelona, C/ de Les Columnes, s/n., 08193 Bellaterra, Barcelona, Spain
| | - Walter Arnold
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Savoyenstraße 1, Vienna A-1160, Austria
| | - Gabrielle Stalder
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Savoyenstraße 1, Vienna A-1160, Austria
| | - Franz Suchentrunk
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Savoyenstraße 1, Vienna A-1160, Austria
| | - Salvador Moyà-Solà
- ICREA Pg. Lluís Companys 23, 08010 Barcelona, Spain
- ICP Institut Català de Paleontologia Miquel Crusafont, Edifici Z, Universitat Autònoma de Barcelona, C/ de Les Columnes, s/n., 08193 Bellaterra, Barcelona, Spain
- BABVE (Departament de Biologia Animal i d’Ecologia) Universitat Autònoma de Barcelona, 08193 Cerdanyola, Spain
| |
Collapse
|
2
|
Jannello JM, Chinsamy A. Osteohistology and palaeobiology of giraffids from the Mio-Pliocene Langebaanweg (South Africa). J Anat 2023; 242:953-971. [PMID: 36748181 PMCID: PMC10093165 DOI: 10.1111/joa.13825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/23/2022] [Accepted: 01/03/2023] [Indexed: 02/08/2023] Open
Abstract
The reconstruction of life history traits, such as growth rate, age at maturity and age at death can be estimated from the histological analysis of long bones. Here, we studied 20 long bones (metapodials, tibia and femora) of Sivatherium hendeyi and Giraffa cf. Giraffa jumae recovered from the Miocene-Pliocene locality of Langebaanweg on the West Coast of South Africa. We analysed the long bone histology and growth marks of juvenile and adult specimens of these taxa. Our results show that bone tissue types and vascular canal orientation varies during ontogeny, as well as between the different skeletal elements, and also across single cross sections of bones. Majority of our specimens appear to be still growing, with only an adult metacarpal of S. hendeyi being skeletally mature as indicated by the presence of an outer circumferential layer. We propose that the growth marks preserved in the cortices of the bones studied are most likely related to multiple catastrophic events as opposed to being annual/seasonal.
Collapse
Affiliation(s)
- Juan Marcos Jannello
- Department of Biological Sciences, University of Cape Town, Rhodes Gift, South Africa.,Instituto de Evolución, Ecología Histórica y Ambiente (IDEVEA) CONICET-UTN-FRSR, San Rafael, Argentina
| | - Anusuya Chinsamy
- Department of Biological Sciences, University of Cape Town, Rhodes Gift, South Africa
| |
Collapse
|
3
|
Funston GF, dePolo PE, Sliwinski JT, Dumont M, Shelley SL, Pichevin LE, Cayzer NJ, Wible JR, Williamson TE, Rae JWB, Brusatte SL. The origin of placental mammal life histories. Nature 2022; 610:107-111. [PMID: 36045293 DOI: 10.1038/s41586-022-05150-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 07/27/2022] [Indexed: 11/09/2022]
Abstract
After the end-Cretaceous extinction, placental mammals quickly diversified1, occupied key ecological niches2,3 and increased in size4,5, but this last was not true of other therians6. The uniquely extended gestation of placental young7 may have factored into their success and size increase8, but reproduction style in early placentals remains unknown. Here we present the earliest record of a placental life history using palaeohistology and geochemistry, in a 62 million-year-old pantodont, the clade including the first mammals to achieve truly large body sizes. We extend the application of dental trace element mapping9,10 by 60 million years, identifying chemical markers of birth and weaning, and calibrate these to a daily record of growth in the dentition. A long gestation (approximately 7 months), rapid dental development and short suckling interval (approximately 30-75 days) show that Pantolambda bathmodon was highly precocial, unlike non-placental mammals and known Mesozoic precursors. These results demonstrate that P. bathmodon reproduced like a placental and lived at a fast pace for its body size. Assuming that P. bathmodon reflects close placental relatives, our findings suggest that the ability to produce well-developed, precocial young was established early in placental evolution, and that larger neonate sizes were a possible mechanism for rapid size increase in early placentals.
Collapse
Affiliation(s)
- Gregory F Funston
- School of GeoSciences, University of Edinburgh, Edinburgh, UK. .,Department of Natural History, Royal Ontario Museum, Toronto, Ontario, Canada.
| | - Paige E dePolo
- School of GeoSciences, University of Edinburgh, Edinburgh, UK
| | - Jakub T Sliwinski
- School of Earth and Environmental Sciences, University of St Andrews, St Andrews, UK
| | - Matthew Dumont
- School of Earth and Environmental Sciences, University of St Andrews, St Andrews, UK
| | - Sarah L Shelley
- School of GeoSciences, University of Edinburgh, Edinburgh, UK
| | | | - Nicola J Cayzer
- School of GeoSciences, University of Edinburgh, Edinburgh, UK
| | - John R Wible
- Carnegie Museum of Natural History, Pittsburgh, PA, USA
| | | | - James W B Rae
- School of Earth and Environmental Sciences, University of St Andrews, St Andrews, UK
| | | |
Collapse
|
4
|
Rux CJ, Vahidi G, Darabi A, Cox LM, Heveran CM. Perilacunar bone tissue exhibits sub-micrometer modulus gradation which depends on the recency of osteocyte bone formation in both young adult and early-old-age female C57Bl/6 mice. Bone 2022; 157:116327. [PMID: 35026452 PMCID: PMC8858864 DOI: 10.1016/j.bone.2022.116327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/19/2021] [Accepted: 01/07/2022] [Indexed: 11/18/2022]
Abstract
Osteocytes resorb and replace bone local to the lacunar-canalicular system (LCS). However, whether osteocyte remodeling impacts bone quality adjacent to the LCS is not understood. Further, while aging is well-established to decrease osteocyte viability and truncate LCS geometry, it is unclear if aging also decreases perilacunar bone quality. To address these questions, we employed atomic force microscopy (AFM) to generate nanoscale-resolution modulus maps for cortical femur osteocyte lacunae from young (5-month) and early-old-age (22-month) female C57Bl/6 mice. AFM-mapped lacunae were also imaged with confocal laser scanning microscopy to determine which osteocytes recently deposited bone as determined by the presence of fluorochrome labels administered 2d and 8d before euthanasia. Modulus gradation with distance from the lacunar wall was compared for labeled (i.e., bone forming) and non-labeled lacunae in both young and aged mice. All mapped lacunae showed sub-microscale modulus gradation, with peak modulus values 200-400 nm from the lacunar wall. Perilacunar modulus gradations depended on the recency of osteocyte bone formation (i.e., the presence of labels). For both ages, 2d-labeled perilacunar bone had lower peak and bulk modulus compared to non-labeled perilacunar bone. Lacunar length reduced with age, but lacunar shape and size were not strong predictors of modulus gradation. Our findings demonstrate for the first time that osteocyte perilacunar remodeling impacts bone tissue modulus, one contributor to bone quality. Given the immense scale of the LCS, differences in perilacunar modulus resulting from osteocyte remodeling activity may affect the quality of a substantial amount of bone tissue.
Collapse
Affiliation(s)
- Caleb J Rux
- Department of Mechanical & Industrial Engineering, Montana State University, United States of America; UC Berkeley-UCSF Graduate Program in Bioengineering, United States of America
| | - Ghazal Vahidi
- Department of Mechanical & Industrial Engineering, Montana State University, United States of America
| | - Amir Darabi
- Department of Mechanical & Industrial Engineering, Montana State University, United States of America
| | - Lewis M Cox
- Department of Mechanical & Industrial Engineering, Montana State University, United States of America
| | - Chelsea M Heveran
- Department of Mechanical & Industrial Engineering, Montana State University, United States of America.
| |
Collapse
|
5
|
OUP accepted manuscript. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|