1
|
Liang X, Sun Y, Chen J, Li J, Ye Y. The Complete Mitochondrial Genome of Nephropsis grandis: Insights into the Phylogeny of Nephropidae Mitochondrial Genome. Biochem Genet 2024:10.1007/s10528-024-10948-6. [PMID: 39470934 DOI: 10.1007/s10528-024-10948-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/21/2024] [Indexed: 11/01/2024]
Abstract
The systematic phylogeny of Pleocyemata species, particularly within the family Nephropidae, remains incomplete. In order to enhance the taxonomy and systematics of Nephropidae within the evolutionary context of Pleocyemata, we embarked upon a comprehensive study aiming to elucidate the phylogenetic position of Nephropsis grandis. Consequently, we determined the complete mitochondrial DNA sequence for N. grandis. The circular genome spans a length of 15,344 bp and exhibits a gene composition analogous to that observed in other metazoans, encompassing a comprehensive set of 37 genes. Additionally, the genome features an AT-rich region. The rRNAs exhibited the highest AT content among the 37 genes (70.41%), followed by tRNAs (67.42%) and protein-coding genes (PCGs) (62.76%). The absence of a dihydrouracil arm in trnS1 prevented the formation of the canonical cloverleaf secondary structure. Selective pressure analysis indicated that the PCGs underwent purifying selection. The Ka/Ks ratios for cox1, cox2, cox3, and cob were considerably lower compared to other PCGs, implying strong purifying selection acting upon these particular genes. The mitochondrial gene order in N. grandis was consistent with the reported order in ancestral Pleocyemata. Phylogenetic revealed that N. grandis forms a cluster with the genus Metanephrops, and this cluster further groups with Homarus and the genus Nephrops within the Nephropidae family. These findings provide robust support for N. grandis as an ancestral member of the Nephropidae family. This study highlights the significance of employing complete mitochondrial genomes in phylogenetic analysis and deepens our understanding of the evolution of the Nephropidae family.
Collapse
Affiliation(s)
- Xinjie Liang
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Yuman Sun
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Jian Chen
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Jiji Li
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Yingying Ye
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China.
| |
Collapse
|
2
|
Sun Y, Liu W, Chen J, Li J, Ye Y, Xu K. Sequence comparison of the mitochondrial genomes of five caridean shrimps of the infraorder Caridea: phylogenetic implications and divergence time estimation. BMC Genomics 2024; 25:968. [PMID: 39407125 PMCID: PMC11481791 DOI: 10.1186/s12864-024-10775-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/04/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND The Caridea, affiliated with Malacostraca, Decapoda, and Pleocyemata, constitute one of the most significant shrimp groups. They are widely distributed across diverse aquatic habitats worldwide, enriching their evolutionary history. In recent years, considerable attention has been focused on the classification and systematic evolution of Caridea, yet controversies still exist regarding the phylogenetic relationships among families. METHODS Here, the complete mitochondrial genome (mitogenome) sequences of five caridean species, namely Heterocarpus sibogae, Procletes levicarina, Macrobrachium sp., Latreutes anoplonyx, and Atya gabonensis, were determined using second-generation high-throughput sequencing technology. The basic structural characteristics, nucleotide composition, amino acid content, and codon usage bias of their mitogenomes were analyzed. Selection pressure values of protein-coding genes (PCGs) in species within the families Pandalidae, Palaemonidae, and Atyidae were also computed. Phylogenetic trees based on the nucleotide and amino acid sequences of 13 PCGs from 103 caridean species were constructed, and divergence times for various families within Caridea were estimated. RESULTS The mitogenome of these five caridean species vary in length from 15,782 to 16,420 base pairs, encoding a total of 37 or 38 genes, including 13 PCGs, 2 rRNA genes, and 22 or 23 tRNA genes. Specifically, L. anoplonyx encodes an additional tRNA gene, bringing its total gene count to 38. The base composition of the mitogenomes of these five species exhibited a higher proportion of adenine-thymine (AT) bases. Six start codons and four stop codons were identified across the five species. Analysis of amino acid content and codon usage revealed variations among the five species. Analysis of selective pressure in Pandalidae, Palaemonidae, and Atyidae showed that the Ka/Ks values of PCGs in all three families were less than 1, indicating that purifying selection is influencing on their evolution. Phylogenetic analysis revealed that each family within Caridea is monophyletic. The results of gene rearrangement and phylogenetic analysis demonstrated correlations between these two aspects. Divergence time estimation, supported by fossil records, indicated that the divergence of Caridea species occurred in the Triassic period of the Mesozoic era, with subsequent differentiation into two major lineages during the Jurassic period. CONCLUSIONS This study explored the fundamental characteristics and phylogenetic relationships of mitogenomes within the infraorder Caridea, providing valuable insights into their classification, interspecific evolutionary patterns, and the evolutionary status of various Caridea families. The findings provide essential references for identifying shrimp species and detecting significant gene rearrangements within the Caridea infraorder.
Collapse
Affiliation(s)
- Yuman Sun
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Lincheng Street, Zhoushan, Zhejiang Province, 316022, China
- Jiangsu Coastal Area Institute of Agricultural Science, Yancheng, Jiangsu Province, China
| | - Wanting Liu
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Lincheng Street, Zhoushan, Zhejiang Province, 316022, China
| | - Jian Chen
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Lincheng Street, Zhoushan, Zhejiang Province, 316022, China
| | - Jiji Li
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Lincheng Street, Zhoushan, Zhejiang Province, 316022, China
| | - Yingying Ye
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Lincheng Street, Zhoushan, Zhejiang Province, 316022, China.
| | - Kaida Xu
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Scientific Observing and Experimental Station of Fishery Resources for Key Fishing Grounds, Ministry of Agriculture and Rural Affairs of China, Zhejiang Marine Fisheries Research Institute, Lincheng Street, Zhoushan, Zhejiang Province, 316022, China.
| |
Collapse
|
3
|
Sun Y, Chen J, Liang X, Li J, Ye Y, Xu K. Sequence comparison of the mitochondrial genomes of Plesionika species (Caridea: Pandalidae), gene rearrangement and phylogenetic relationships of Caridea. PeerJ 2024; 12:e17314. [PMID: 38799064 PMCID: PMC11127644 DOI: 10.7717/peerj.17314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/08/2024] [Indexed: 05/29/2024] Open
Abstract
Background Despite the Caridean shrimps' vast species richness and ecological diversity, controversies persist in their molecular classification. Within Caridea, the Pandalidae family exemplifies significant taxonomic diversity. As of June 25, 2023, GenBank hosts only nine complete mitochondrial genomes (mitogenomes) for this family. The Plesionika genus within Pandalidae is recognized as polyphyletic. To improve our understanding of the mitogenome evolution and phylogenetic relationships of Caridea, this study introduces three novel mitogenome sequences from the Plesionika genus: P. ortmanni, P. izumiae and P. lophotes. Methods The complete mitochondrial genomes of three Plesionika species were sequenced utilizing Illumina's next-generation sequencing (NGS) technology. After assembling and annotating the mitogenomes, we conducted structural analyses to examine circular maps, sequence structure characteristics, base composition, amino acid content, and synonymous codon usage frequency. Additionally, phylogenetic analysis was performed by integrating existing mitogenome sequences of true shrimp available in GenBank. Results The complete mitogenomes of the three Plesionika species encompass 37 canonical genes, comprising 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs), two ribosomal RNAs (rRNAs), and one control region (CR). The lengths of these mitogenomes are as follows: 15,908 bp for P. ortmanni, 16,074 bp for P. izumiae and 15,933 bp for P. lophotes. Our analyses extended to their genomic features and structural functions, detailing base composition, gene arrangement, and codon usage. Additionally, we performed selection pressure analysis on the PCGs of all Pandalidae species available in Genbank, indicating evolutionary purification selection acted on the PCGs across Pandalidae species. Compared with the ancestral Caridea, translocation of two tRNA genes, i.e., trnP or trnT, were found in the two newly sequenced Plesionika species-P. izumiae and P. lophotes. We constructed a phylogenetic tree of Caridea using the sequences of 13 PCGs in mitogenomes. The results revealed that family Pandalidae exhibited robust monophyly, while genus Plesionika appeared to be a polyphyletic group. Conclusions Gene rearrangements within the Pandalidae family were observed for the first time. Furthermore, a significant correlation was discovered between phylogenetics of the Caridea clade and arrangement of mitochondrial genes. Our findings offer a detailed exploration of Plesionika mitogenomes, laying a crucial groundwork for subsequent investigations into genetic diversity, phylogenetic evolution, and selective breeding within this genus.
Collapse
Affiliation(s)
- Yuman Sun
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang Province, China
| | - Jian Chen
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang Province, China
| | - Xinjie Liang
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang Province, China
| | - Jiji Li
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang Province, China
| | - Yingying Ye
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang Province, China
| | - Kaida Xu
- Zhejiang Marine Fishery Research Institute, Zhoushan, Zhejiang Province, China
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Scientific Observing and Experimental Station of Fishery Resources for Key Fishing Grounds, Ministry of Agriculture and Rural Affairs, Zhoushan, Zhejiang Province, China
| |
Collapse
|
4
|
Wang H, Zeng S, Zhang Z, Yang D. The complete mitochondrial genome of Rhynchocinetes brucei Okuno 1994 (Decapoda: Rhynchocinetidae). Mitochondrial DNA B Resour 2024; 9:347-351. [PMID: 38476839 PMCID: PMC10930117 DOI: 10.1080/23802359.2023.2261636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/17/2023] [Indexed: 03/14/2024] Open
Abstract
We report the complete mitochondrial genome of Rhynchocinetes brucei Okuno 1994. The mitogenome was found to contain 16158 bp with 13 protein-coding genes (PCGs), 22 tRNA genes (tRNAs), 2 rRNA genes (rRNAs), and 1 putative control region. Phylogenetic analysis indicated that R. brucei was sister to Rhynchocinetes durbanensis (PP= 1), of the same family Rhynchocinetidae. These results are helpful for research on the phylogenetic and evolutionary studies of this group.
Collapse
Affiliation(s)
- Hangjun Wang
- Wenzhou Marine Center, Ministry of Natural Resources of the People’s Republic of China, Beijing, China
- Marine Ecosystem Observation and Research Station on the Yangtze River Estuary, Wenzhou, China
| | - Sheng Zeng
- College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Zhao Zhang
- Wenzhou Marine Center, Ministry of Natural Resources of the People’s Republic of China, Beijing, China
- Marine Ecosystem Observation and Research Station on the Yangtze River Estuary, Wenzhou, China
| | - Deyuan Yang
- College of the Environment and Ecology, Xiamen University, Xiamen, China
- National Taiwan Ocean University, Keelung, Taiwan, China
| |
Collapse
|
5
|
Soundharapandiyan N, Rajaretinam RK, Wilson Alphonse CR. Exploring the mitochondrial genome of Caridina pseudogracilirostris: a comparative analysis within the Atyidae Family. Mol Biol Rep 2023; 50:8121-8131. [PMID: 37552391 DOI: 10.1007/s11033-023-08700-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/19/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Caridina pseudogracilirostris is a highly adaptive estuarine species found in brackish waters and marshes along the southwestern and southern coastal regions of India. METHODS AND RESULTS The whole mitochondrial genome of C. pseudogracilirostris is 15,451 bp in length with 59.3% AT content and encodes 37 genes, including 22 tRNAs, 13 protein-coding genes, and two rRNAs, which are arranged in a distinctive pattern similar to most crustaceans. ML and BI methods were used for phylogenetic analysis of C. pseudogracilirostris clustered with other Caridina species, supporting the monophyly of the Caridina genus within the Atyidae family. The fully annotated mitochondrial genome of C. pseudogracilirostris was submitted to GenBank under accession number OQ534868.1. CONCLUSIONS We are the first to report on the C. pseudogracilirostris whole mitochondrial genome, which provides a valuable resource for future research on genetics, evolution, phylogenetics, etc., among Caridina species and other species. The phylogenetic investigation supports the monophyly of the Caridina genus within the Atyidae family and emphasizes the value of mitochondrial genome data in determining the evolutionary relationships among crustaceans.
Collapse
Affiliation(s)
- Nandhagopal Soundharapandiyan
- Neuroscience Lab, Centre for Molecular and Nanomedical Sciences, Centre for Nanoscience and Nanotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| | - Rajesh Kannan Rajaretinam
- Neuroscience Lab, Centre for Molecular and Nanomedical Sciences, Centre for Nanoscience and Nanotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India.
- School of Biological and Life Sciences, Galgotias University, Sector, 17-A, Yamuna Expressway, Gautam Buddha Nagar, National Capital Region, Greater Noida, UP, 203201, India.
| | - Carlton Ranjith Wilson Alphonse
- Neuroscience Lab, Centre for Molecular and Nanomedical Sciences, Centre for Nanoscience and Nanotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| |
Collapse
|
6
|
Sun Y, Chen J, Ye Y, Xu K, Li J. Comparison of Mitochondrial Genome Sequences between Two Palaemon Species of the Family Palaemonidae (Decapoda: Caridea): Gene Rearrangement and Phylogenetic Implications. Genes (Basel) 2023; 14:1499. [PMID: 37510403 PMCID: PMC10379425 DOI: 10.3390/genes14071499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
To further understand the origin and evolution of Palaemonidae (Decapoda: Caridea), we determined the mitochondrial genome sequence of Palaemon macrodactylus and Palaemon tenuidactylus. The entire mitochondrial genome sequences of these two Palaemon species encompassed 37 typical genes, including 13 protein-coding genes (PCGs), 2 ribosomal RNA genes (rRNAs), and 22 transfer RNA genes (tRNAs), and a control region (CR). The lengths of their mitochondrial genomes were 15,744 bp (P. macrodactylus) and 15,735 bp (P. tenuidactylus), respectively. We analyzed their genomic features and structural functions. In comparison with the ancestral Decapoda, these two newly sequenced Palaemon species exhibited a translocation event, where the gene order was trnK-trnD instead of trnD-trnK. Based on phylogenetic analysis constructed from 13 PCGs, the 12 families from Caridea can be divided into four major clades. Furthermore, it was revealed that Alpheidae and Palaemonidae formed sister groups, supporting the monophyly of various families within Caridea. These findings highlight the significant gene rearrangements within Palaemonidae and provide valuable evidence for the phylogenetic relationships within Caridea.
Collapse
Affiliation(s)
- Yuman Sun
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Jian Chen
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yingying Ye
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Kaida Xu
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Scientific Observing and Experimental Station of Fishery Resources for Key Fishing Grounds, Ministry of Agriculture and Rural Affairs of China, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
| | - Jiji Li
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|