1
|
Taha BA, Addie AJ, Haider AJ, Kadhim AC, Azzahrani AS, Arsad N. Needle-Free Targeted Injections Using Bubble Laser Technology in Therapeutics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:23549-23561. [PMID: 39460975 DOI: 10.1021/acs.langmuir.4c03513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
This work explores bubble laser technology as an alternative to needles in injection systems for vaccination, cancer treatment, insulin delivery, and catheter hygiene. The technology leverages laser-induced microfiltration and bubble dynamics to create high-speed pneumatic jets that penetrate the skin without needles, addressing discomfort, infection risk, and needle-related concerns. The system's performance is analyzed based on laser wavelength, pulse duration, and Gaussian beam droplet size. The findings indicate a significant increase in spot size at 1064 nm compared with 400 nm, consistent with the diffraction theory. Induced bubble dynamics reveal bubble generation, jetting, and fluid interactions as the Weber number increases, as well as jet velocity and fluid inertia. For femtosecond pulses, increasing the pulse duration from 100 to 1500 fs reduces the bubble lifespan from 0.8 to 0.3 arbitrary units, and the collapse pressure decreases from 2.1 to 0.4 bar. For picosecond pulses, the bubble lifetime decreases from 0.9 to 0.5 arbitrary units, and the pressure drop decreases from 2.0 to 0.4 bar as the pulse length extends from 2000 to 8000 ps. Jet formation in laser jet injection systems is enhanced by short pulses in water that produce longer-lasting bubbles. Drug delivery based on the Rayleigh-Plesset equation is characterized by a low-pressure collapse and short bubble lifetime. Thus, this relationship suggests that bubble laser technology can provide a more controlled and safer method of needle-free procedures, increasing compliance and reducing tissue trauma.
Collapse
Affiliation(s)
- Bakr Ahmed Taha
- UKM─Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia UKM, Bangi 43600, Malaysia
| | - Ali J Addie
- Center of Industrial Applications and Materials Technology, Scientific Research Commission, Baghdad 00964, Iraq
| | - Adawiya J Haider
- Applied Sciences Department/Laser Science and Technology Branch, University of Technology, Baghdad 10066, Iraq
| | - Ahmed C Kadhim
- Department of Communications Engineering, University of Technology, Baghdad 10066, Iraq
| | - Ahmad S Azzahrani
- Electrical Engineering Department, Northern Border University, Arar 73211, Saudi Arabia
| | - Norhana Arsad
- UKM─Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia UKM, Bangi 43600, Malaysia
| |
Collapse
|
2
|
Maxwell AD. Revealing physical interactions of ultrasound waves with the body through photoelasticity imaging. OPTICS AND LASERS IN ENGINEERING 2024; 181:108361. [PMID: 39219742 PMCID: PMC11361005 DOI: 10.1016/j.optlaseng.2024.108361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Ultrasound is a ubiquitous technology in medicine for screening, diagnosis, and treatment of disease. The functionality and efficacy of different ultrasound modes relies strongly on our understanding of the physical interactions between ultrasound waves and biological tissue structures. This article reviews the use of photoelasticity imaging for investigating ultrasound fields and interactions. Physical interactions are described for different ultrasound technologies, including those using linear and nonlinear ultrasound waves, as well as shock waves. The use of optical modulation of light by ultrasound is presented for shadowgraphic and photoelastic techniques. Investigations into shock wave and burst wave lithotripsy using photoelastic methods are summarized, along with other endoscopic forms of lithotripsy. Photoelasticity in soft tissue surrogate materials is reviewed, and its deployment in investigating tissue-bubble interactions, generated ultrasound waves, and traumatic brain injury, are discussed. With the continued growth of medical ultrasound, photoelasticity imaging can play a role in elucidating the physical mechanisms leading to useful bioeffects of ultrasound for imaging and therapy.
Collapse
Affiliation(s)
- Adam D Maxwell
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
- Department of Urology, University of Washington School of Medicine, Seattle, WA 98195
| |
Collapse
|
3
|
Hassanzadeh H, Joshi S, Taghavi SM. Predicting buoyant jet characteristics: a machine learning approach. CHEMICAL PRODUCT AND PROCESS MODELING 2024; 19:163-177. [PMID: 38765865 PMCID: PMC11098531 DOI: 10.1515/cppm-2023-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/18/2023] [Indexed: 05/22/2024]
Abstract
We study positively buoyant miscible jets through high-speed imaging and planar laser-induced fluorescence methods, and we rely on supervised machine learning techniques to predict jet characteristics. These include, in particular, predictions to the laminar length and spread angle, over a wide range of Reynolds and Archimedes numbers. To make these predictions, we use linear regression, support vector regression, random forests, K-nearest neighbour, and artificial neural network algorithms. We evaluate the performance of the aforementioned models using various standard metrics, finding that the random forest algorithm is the best for predicting our jet characteristics. We also discover that this algorithm outperforms a recent empirical correlation, resulting in a significant increase in accuracy, especially for predicting the laminar length.
Collapse
Affiliation(s)
- Hossein Hassanzadeh
- Department of Chemical Engineering, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Saptarshi Joshi
- Department of Chemical Engineering, Université Laval, Québec, QC, G1V 0A6, Canada
| | | |
Collapse
|
4
|
Rosselló JM, Izak Ghasemian S, Ohl CD. High-speed ultrasound imaging of bubbly flows and shear waves in soft matter. SOFT MATTER 2024; 20:823-836. [PMID: 38167938 DOI: 10.1039/d3sm01546g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
In this methods paper, we explore the capabilities of high-speed ultrasound imaging (USI) to study fast varying and complex multi-phase structures in liquids and soft materials. Specifically, we assess the advantages and the limitations of this imaging technique through three distinct experiments involving rapid dynamics: the underwater flow induced by an external jet, the dissolution of sub-micron bubbles in water, and the propagation of shear waves in a soft elastic material. The phenomena were simultaneously characterized using optical microscopy and USI. In water, we use compounded USI for tracking a multi-phase flow produced by a jetting bubble diving into a liquid pool at speeds around 20 m s-1. These types of jets are produced by focusing a single laser pulse below the liquid surface. Upon breakup, they create a bubbly flow that exhibits high reflectivity to the ultrasound signal, enabling the visualization of the subsequent turbulent flow. In a second experiment, we demonstrate the potential of USI for recording the diffusive shrinkage of micro- and nanobubbles in water that could not be optically resolved. Puncturing an elastic material with a liquid jet creates shear waves that can be utilized for elastography measurements. We analysed the shape and speed of shear waves produced by different types of jetting bubbles in industrial gelatin. The wave characteristics were simultaneously determined by implementing particle velocimetry in optical and ultrasound measurements. For the latter, we employed a novel method to create homogeneously distributed micro- and nanobubbles in gelatin by illuminating it with a collimated laser beam.
Collapse
Affiliation(s)
- Juan Manuel Rosselló
- Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000 Ljubljana, Slovenia.
- Otto von Guericke University Magdeburg, Institute of Physics, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Saber Izak Ghasemian
- Otto von Guericke University Magdeburg, Institute of Physics, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Claus-Dieter Ohl
- Otto von Guericke University Magdeburg, Institute of Physics, Universitätsplatz 2, 39106 Magdeburg, Germany
| |
Collapse
|
5
|
Kho ASK, Béguin S, O'Cearbhaill ED, Ní Annaidh A. Mechanical characterisation of commercial artificial skin models. J Mech Behav Biomed Mater 2023; 147:106090. [PMID: 37717289 DOI: 10.1016/j.jmbbm.2023.106090] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/19/2023] [Accepted: 08/23/2023] [Indexed: 09/19/2023]
Abstract
Understanding of the mechanical properties of skin is crucial in evaluating the performance of skin-interfacing medical devices. Artificial skin models (ASMs) have rapidly gained attention as they are able to overcome the challenges in ethically sourcing consistent and representative ex vivo animal or human tissue models. Although some ASMs have become commercialised, a thorough understanding of the mechanical properties of the skin models is crucial to ensure that they are suitable for the purpose of the study. In the present study, skin and fat layers of ASMs (Simulab®, LifeLike®, SynDaver® and Parafilm®) were mechanically characterised through hardness, needle insertion, tensile and compression testing. Different boundary constraint conditions (minimally and highly constrained) were investigated for needle insertion testing, while anisotropic properties of the skin models were investigated through different specimen orientations during tensile testing. Analysis of variance (ANOVA) tests were performed to compare the mechanical properties between the skin models. Properties of the skin models were compared against literature to determine the suitability of the skin models based on the material property of interest. All skin models offer relatively consistent mechanical performance, providing a solid basis for benchtop evaluation of skin-interfacing medical device performance. Through prioritising models with mechanical properties that are consistent with human skin data, and with limited variance, researchers can use the data presented here as a toolbox to select the most appropriate ASM for their particular application.
Collapse
Affiliation(s)
- Antony S K Kho
- UCD Centre for Biomedical Engineering, University College Dublin, Belfield Dublin 4, Ireland; I-Form Advanced Manufacturing Research Centre, School of Mechanical & Materials Engineering, University College Dublin, Belfield Dublin 4, Ireland; BD Research Centre Ireland Ltd, Carysfort Avenue, Blackrock, Ireland
| | - Steve Béguin
- BD Research Centre Ireland Ltd, Carysfort Avenue, Blackrock, Ireland
| | - Eoin D O'Cearbhaill
- UCD Centre for Biomedical Engineering, University College Dublin, Belfield Dublin 4, Ireland; I-Form Advanced Manufacturing Research Centre, School of Mechanical & Materials Engineering, University College Dublin, Belfield Dublin 4, Ireland; UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield Dublin 4, Ireland; The Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Aisling Ní Annaidh
- UCD Centre for Biomedical Engineering, University College Dublin, Belfield Dublin 4, Ireland; I-Form Advanced Manufacturing Research Centre, School of Mechanical & Materials Engineering, University College Dublin, Belfield Dublin 4, Ireland; UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield Dublin 4, Ireland.
| |
Collapse
|
6
|
Mohizin A, Imran JH, Lee KS, Kim JK. Dynamic interaction of injected liquid jet with skin layer interfaces revealed by microsecond imaging of optically cleared ex vivo skin tissue model. J Biol Eng 2023; 17:15. [PMID: 36849998 PMCID: PMC9969392 DOI: 10.1186/s13036-023-00335-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/21/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Needle-free jet injection (NFJI) systems enable a controlled and targeted delivery of drugs into skin tissue. However, a scarce understanding of their underlying mechanisms has been a major deterrent to the development of an efficient system. Primarily, the lack of a suitable visualization technique that could capture the dynamics of the injected fluid-tissue interaction with a microsecond range temporal resolution has emerged as a main limitation. A conventional needle-free injection system may inject the fluids within a few milliseconds and may need a temporal resolution in the microsecond range for obtaining the required images. However, the presently available imaging techniques for skin tissue visualization fail to achieve these required spatial and temporal resolutions. Previous studies on injected fluid-tissue interaction dynamics were conducted using in vitro media with a stiffness similar to that of skin tissue. However, these media are poor substitutes for real skin tissue, and the need for an imaging technique having ex vivo or in vivo imaging capability has been echoed in the previous reports. METHODS A near-infrared imaging technique that utilizes the optical absorption and fluorescence emission of indocyanine green dye, coupled with a tissue clearing technique, was developed for visualizing a NFJI in an ex vivo porcine skin tissue. RESULTS The optimal imaging conditions obtained by considering the optical properties of the developed system and mechanical properties of the cleared ex vivo samples are presented. Crucial information on the dynamic interaction of the injected liquid jet with the ex vivo skin tissue layers and their interfaces could be obtained. CONCLUSIONS The reported technique can be instrumental for understanding the injection mechanism and for the development of an efficient transdermal NFJI system as well.
Collapse
Affiliation(s)
- Abdul Mohizin
- School of Mechanical Engineering, Kookmin University, 77 Jeongneung-Ro, Seongbuk-Gu, Seoul, 02707, Republic of Korea
| | - Jakir Hossain Imran
- Department of Mechanical Engineering, Graduate School, Kookmin University, Seoul, 02707, Republic of Korea
| | - Kee Sung Lee
- School of Mechanical Engineering, Kookmin University, 77 Jeongneung-Ro, Seongbuk-Gu, Seoul, 02707, Republic of Korea
| | - Jung Kyung Kim
- School of Mechanical Engineering, Kookmin University, 77 Jeongneung-Ro, Seongbuk-Gu, Seoul, 02707, Republic of Korea.
| |
Collapse
|
7
|
Design and Analysis: Servo-Tube-Powered Liquid Jet Injector for Drug Delivery Applications. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12146920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The current state of commercially available needle-free liquid jet injectors for drug delivery offers no way of controlling the output pressure of the device in real time, as the driving mechanism for these injectors provides a fixed delivery pressure profile. In order to improve the delivery efficiency as well as the precision of the targeted tissue depth, it is necessary to develop a power source that can accurately control the plunger velocity. The duration of a liquid jet injection can vary from 10 to 100 ms, and it generate acceleration greater than 2 g (where g is the gravity); thus, a platform for real-time control must exhibit a response time greater than 1 kHz and good accuracy. Improving the pioneering work by Taberner and others whereby a Lorentz force actuator based upon a voice coil is designed, this study presents a prototype injector system with greater controllability based on the use of a fully closed-loop control system and a classical three-phase linear motor consisting of three fixed coils and multiple permanent magnets. Apart from being capable of generating jets with a required stagnation pressure of 15–16 MPa for skin penetration and liquid injection, as well as reproducing typical injection dynamics using commercially available injectors, the novelty of this proposed platform is that it is proven to be capable of shaping the real-time jet injection pressure profile, including pulsed injection, so that it can later be tailored for more efficient drug delivery.
Collapse
|
8
|
Mechanism of jet injector-induced plasmid DNA uptake: Contribution of shear stress and endocytosis. Int J Pharm 2021; 609:121200. [PMID: 34662643 DOI: 10.1016/j.ijpharm.2021.121200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 11/22/2022]
Abstract
The administration of plasmid DNA (pDNA) using a pyro-drive jet injector allows gene expression in cells of the treated tissue; however, the detailed plasmid uptake process remains to be determined. A recent theory suggests that shear stress enhances the endocytosis pathway and pDNA internalization. Here, we investigated the process of pDNA uptake in the context of a pyro-drive jet injector-based administration as a way to optimize gene transfer efficiency via the increase in DNA uptake. The gene expression was significantly improved when the shear stress caused by the jet was generated where the pDNA was retained. Contrarily, heparin, an inhibitor of the spontaneous uptake of injected DNA, inhibited the gene expression in jet injection. In addition, treatment with typical endocytosis inhibitors (chlorpromazine, methyl-β-cyclodextrin, dimethyl amiloride, rottlerin, and NSC23766) also reduced plasmid expression efficiency in the context of jet injection; conversely, endosome escape in the context of chloroquine treatment increased the expression efficiency. Altogether, our results not only clarify the mechanism of pDNA uptake in the context of jet injection but also highlight the key role of endosomes on the intracellular trafficking of pDNA. Importantly, such findings may impact other studies on gene transfer and endocytosis and boost further efforts to improve the efficiency and safety of jet injection in the context of both basic and translational applications.
Collapse
|