1
|
Sinaga P, Klichowska E, Nowak A, Nobis M. Hybridization and introgression events in cooccurring populations of closely related grasses (Poaceae: Stipa) in high mountain steppes of Central Asia. PLoS One 2024; 19:e0298760. [PMID: 38412151 PMCID: PMC10898772 DOI: 10.1371/journal.pone.0298760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/31/2024] [Indexed: 02/29/2024] Open
Abstract
Stipa is a genus comprising ca. 150 species found in warm temperate regions of the Old World and around 30% of its representatives are of hybrid origin. In this study, using integrative taxonomy approach, we tested the hypothesis that hybridization and introgression are the explanations of the morphological intermediacy in species belonging to Stipa sect. Smirnovia, one of the species-rich sections in the mountains of Central Asia. Two novel nothospecies, S. magnifica × S. caucasica subsp. nikolai and S. lingua × S. caucasica subsp. nikolai, were identified based on a combination of morphological characters and SNPs markers. SNPs marker revealed that all S. lingua × S. caucasica samples were F1 hybrids, whereas most of S. magnifica × S. caucasica samples were backcross hybrids. Furthermore, the above mentioned hybrids exhibit transgressive morphological characters to each of their parental species. These findings have implications for understanding the process of hybridization in the genus Stipa, particularly in the sect. Smirnovia. As a taxonomic conclusion, we describe the two new nothospecies S. × muksuensis (from Tajikistan) and S. × ochyrae (from Kyrgyzstan) and present an identification key to species morphologically similar to the taxa mentioned above.
Collapse
Affiliation(s)
- Patar Sinaga
- Institute of Botany, Faculty of Biology, Jagiellonian University, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Ewelina Klichowska
- Institute of Botany, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Arkadiusz Nowak
- Polish Academy of Sciences Botanical Garden – Center for Biological Diversity Conservation in Powsin, Warszawa, Poland
- Botanical Garden of the Wrocław University, Wrocław, Poland
| | - Marcin Nobis
- Institute of Botany, Faculty of Biology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
2
|
Sha N, Li Z, Sun Q, Han Y, Tian L, Wu Y, Li X, Shi Y, Zhang J, Peng J, Wang L, Dang Z, Liang C. Elucidation of the evolutionary history of Stipa in China using comparative transcriptomic analysis. FRONTIERS IN PLANT SCIENCE 2023; 14:1275018. [PMID: 38148860 PMCID: PMC10751131 DOI: 10.3389/fpls.2023.1275018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/08/2023] [Indexed: 12/28/2023]
Abstract
Phylogenetic analysis provides crucial insights into the evolutionary relationships and diversification patterns within specific taxonomic groups. In this study, we aimed to identify the phylogenetic relationships and explore the evolutionary history of Stipa using transcriptomic data. Samples of 12 Stipa species were collected from the Qinghai-Tibet Plateau and Mongolian Plateau, where they are widely distributed, and transcriptome sequencing was performed using their fresh spikelet tissues. Using bidirectional best BLAST analysis, we identified two sets of one-to-one orthologous genes shared between Brachypodium distachyon and the 12 Stipa species (9397 and 2300 sequences, respectively), as well as 62 single-copy orthologous genes. Concatenation methods were used to construct a robust phylogenetic tree for Stipa, and molecular dating was used to estimate divergence times. Our results indicated that Stipa originated during the Pliocene. In approximately 0.8 million years, it diverged into two major clades each consisting of native species from the Mongolian Plateau and the Qinghai-Tibet Plateau, respectively. The evolution of Stipa was closely associated with the development of northern grassland landscapes. Important external factors such as global cooling during the Pleistocene, changes in monsoonal circulation, and tectonic movements contributed to the diversification of Stipa. This study provided a highly supported phylogenetic framework for understanding the evolution of the Stipa genus in China and insights into its diversification patterns.
Collapse
Affiliation(s)
- Na Sha
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Ministry of Education of China, Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and Environment, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Zhiyong Li
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Ministry of Education of China, Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and Environment, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Qiang Sun
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Ministry of Education of China, Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and Environment, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Ying Han
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Ministry of Education of China, Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and Environment, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Li Tian
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Ministry of Education of China, Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and Environment, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Yantao Wu
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Ministry of Education of China, Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and Environment, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Xing Li
- Institute of Landscape and Environment, Inner Mongolia Academy of Forestry Science, Hohhot, Inner Mongolia, China
| | - Yabo Shi
- School of Resources and Environment, Baotou Teachers’ College, Baotou, Inner Mongolia, China
| | - Jinghui Zhang
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Ministry of Education of China, Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and Environment, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Jiangtao Peng
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Ministry of Education of China, Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and Environment, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Lixin Wang
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Ministry of Education of China, Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and Environment, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Zhenhua Dang
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Ministry of Education of China, Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and Environment, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Cunzhu Liang
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Ministry of Education of China, Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and Environment, Inner Mongolia University, Hohhot, Inner Mongolia, China
| |
Collapse
|
3
|
Liu J, Ni Y, Liu C. Polymeric structure of the Cannabis sativa L. mitochondrial genome identified with an assembly graph model. Gene 2023; 853:147081. [PMID: 36470482 DOI: 10.1016/j.gene.2022.147081] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/14/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
Cannabis sativa L. belongs to the family Cannabaceae in Rosales. It has been widely used as medicines, building materials, and textiles. Elucidating its genome is critical for molecular breeding and synthetic biology study. Many studies have shown that the mitochondrial genomes (mitogenomes) and even chloroplast genomes (plastomes) had complex polymeric structures. Using the Nanopore sequencing platform, we sequenced, assembled, and analyzed its mitogenome and plastome. The resulting unitig graph suggested that the mitogenome had a complex polymeric structure. However, a gap-free, circular sequence was further assembled from the unitig graph. In contrast, a circular sequence representing the plastome was obtained. The mitogenome major conformation was 415,837 bp long, and the plastome was 153,927 bp long. To test if the repeat sequences promote recombination, which corresponds to the branch points in the structure, we tested the sequences around repeats by long-read mapping. Among 208 pairs of predicted repeats, the mapping results supported the presence of cross-over around 25 pairs of repeats. Subsequent PCR amplification confirmed the presence of cross-over around 15 of the 25 repeats. By comparing the mitogenome and plastome sequences, we identified 19 mitochondria plastid DNAs, including seven complete genes (trnW-CCA, trnP-UGG, psbJ, trnN-GUU, trnD-GUC, trnH-GUG, trnM-CAU) and nine gene fragments. Furthermore, the selective pressure analysis results showed that five genes (atp1, ccmB, ccmC, cox1, nad7) had 19 positively selected sites. Lastly, we predicted 28 RNA editing sites. A total of 8 RNA editing sites located in the coding regions were successfully validated by PCR amplification and Sanger sequencing, of which four were synonymous, and four were nonsynonymous. In particular, the RNA editing events appeared to be tissue-specific in C. sativa mitogenome. In summary, we have confirmed the major confirmation of C. sativa mitogenome and characterized its structural features in detail. These results provide critical information for future variety breeding and resource development for C. sativa.
Collapse
Affiliation(s)
- Jingting Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China
| | - Yang Ni
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China
| | - Chang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China.
| |
Collapse
|
4
|
Wang Z, Tian Y, Ji B, Liu W. Characterization of the complete chloroplast genome sequence of Stipa bungeana (Poaceae), an important forage grass in the temperate steppe of Northern China. Mitochondrial DNA B Resour 2022; 7:1948-1951. [PMID: 36386024 PMCID: PMC9661979 DOI: 10.1080/23802359.2022.2139161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Stipa bungeana Trin. 1833 is an important forage grass in Poaceae, widely distributed in the temperate steppe of Northern China, with strong grazing tolerance and feeding value. In this study, we performed the complete chloroplast (cp) genome sequence of S. bungeana to explore its phylogenetic position with other Stipa. The results showed that the circular complete cp genome of S. bungeana was 137,759 bp in length, including a large single copy (LSC) of 81,652 bp, a small single copy (SSC) of 12,817 bp, and two inverted repeats (IR) of 21,645 bp. The GC content accounts for 43.71% and annotated 134 single genes, which include 87 protein-coding genes, eight rRNA genes, and 39 tRNA genes. Maximum-likelihood (ML) phylogenetic tree suggested that the S. bungeana was closely related to other Stipa except for S. purpurea.
Collapse
Affiliation(s)
- Zhanjun Wang
- Institute of Forestry and Grassland Ecology, Ningxia Academy of Agriculture and Forestry Science, Yinchuan, China
- Ningxia Key Laboratory of Desertification Control and Soil and Water Conservation, Ningxia Academy of Agriculture and Forestry Science, Yinchuan, China
| | - Ying Tian
- Institute of Forestry and Grassland Ecology, Ningxia Academy of Agriculture and Forestry Science, Yinchuan, China
- Ningxia Key Laboratory of Desertification Control and Soil and Water Conservation, Ningxia Academy of Agriculture and Forestry Science, Yinchuan, China
| | - Bo Ji
- Institute of Forestry and Grassland Ecology, Ningxia Academy of Agriculture and Forestry Science, Yinchuan, China
- Ningxia Key Laboratory of Desertification Control and Soil and Water Conservation, Ningxia Academy of Agriculture and Forestry Science, Yinchuan, China
| | - Wangsuo Liu
- Institute of Forestry and Grassland Ecology, Ningxia Academy of Agriculture and Forestry Science, Yinchuan, China
- School of Agriculture, Ningxia University, Yinchuan, China
- Ningxia Technical College of Wine and Desertification Prevention, Yinchuan, China
| |
Collapse
|
5
|
Baiakhmetov E, Ryzhakova D, Gudkova PD, Nobis M. Evidence for extensive hybridisation and past introgression events in feather grasses using genome-wide SNP genotyping. BMC PLANT BIOLOGY 2021; 21:505. [PMID: 34724894 PMCID: PMC8559405 DOI: 10.1186/s12870-021-03287-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 10/20/2021] [Indexed: 06/03/2023]
Abstract
BACKGROUND The proper identification of feather grasses in nature is often limited due to phenotypic variability and high morphological similarity between many species. Among plausible factors influencing this issue are hybridisation and introgression recently detected in the genus. Nonetheless, to date, only a bounded set of taxa have been investigated using integrative taxonomy combining morphological and molecular data. Here, we report the first large-scale study on five feather grass species across several hybrid zones in Russia and Central Asia. In total, 302 specimens were sampled in the field and classified based on the current descriptions of these taxa. They were then genotyped with high density genome-wide markers and measured based on a set of morphological characters to delimitate species and assess levels of hybridisation and introgression. Moreover, we tested species for past introgression and estimated divergence times between them. RESULTS Our findings demonstrated that 250 specimens represent five distinct species: S. baicalensis, S. capillata, S. glareosa, S. grandis and S. krylovii. The remaining 52 individuals provided evidence for extensive hybridisation between S. capillata and S. baicalensis, S. capillata and S. krylovii, S. baicalensis and S. krylovii, as well as to a lesser extent between S. grandis and S. krylovii, S. grandis and S. baicalensis. We detected past reticulation events between S. baicalensis, S. krylovii, S. grandis and inferred that diversification within species S. capillata, S. baicalensis, S. krylovii and S. grandis started ca. 130-96 kya. In addition, the assessment of genetic population structure revealed signs of contemporary gene flow between populations across species from the section Leiostipa, despite significant geographical distances between some of them. Lastly, we concluded that only 5 out of 52 hybrid taxa were properly identified solely based on morphology. CONCLUSIONS Our results support the hypothesis that hybridisation is an important mechanism driving evolution in Stipa. As an outcome, this phenomenon complicates identification of hybrid taxa in the field using morphological characters alone. Thus, integrative taxonomy seems to be the only reliable way to properly resolve the phylogenetic issue of Stipa. Moreover, we believe that feather grasses may be a suitable genus to study hybridisation and introgression events in nature.
Collapse
Affiliation(s)
- Evgenii Baiakhmetov
- Institute of Botany, Faculty of Biology, Jagiellonian University, Gronostajowa 3, 30-387, Kraków, Poland.
- Research laboratory 'Herbarium', National Research Tomsk State University, Lenin 36 Ave., 634050, Tomsk, Russia.
| | - Daria Ryzhakova
- Research laboratory 'Herbarium', National Research Tomsk State University, Lenin 36 Ave., 634050, Tomsk, Russia
- Department of Biology, Altai State University, Lenin 61 Ave., 656049, Barnaul, Russia
| | - Polina D Gudkova
- Research laboratory 'Herbarium', National Research Tomsk State University, Lenin 36 Ave., 634050, Tomsk, Russia
- Department of Biology, Altai State University, Lenin 61 Ave., 656049, Barnaul, Russia
| | - Marcin Nobis
- Institute of Botany, Faculty of Biology, Jagiellonian University, Gronostajowa 3, 30-387, Kraków, Poland.
- Research laboratory 'Herbarium', National Research Tomsk State University, Lenin 36 Ave., 634050, Tomsk, Russia.
| |
Collapse
|