1
|
Sun Y, Han Y. GNA15 facilitates the malignant development of thyroid carcinoma cells via the BTK-mediated MAPK signaling pathway. Histol Histopathol 2024; 39:1217-1227. [PMID: 38333922 DOI: 10.14670/hh-18-714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
G protein subunit alpha 15 (GNA15) is recognized as an oncogene for some cancers, however, its role in thyroid carcinoma (TC) is elusive and is investigated in this study. Concretely, bioinformatics was employed to analyze the GNA15 expression profile in TC. The effect of GNA15 on TC cell functions was examined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), colony formation, and Transwell assays. Expressions of extracellular regulated protein kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 were determined using Western blot. The involvement of Bruton tyrosine kinase (BTK) in the mechanism of GNA15 was investigated by BTK knockdown and rescue assay. GNA15 presented an overexpression pattern in TC samples, which facilitated the viability, proliferation, migration, and invasion of TC cells; GNA15 silencing led to converse results. Ratios of p-ERK/ERK, p-JNK/JNK, and p-p38/p38 were upregulated by GNA15 overexpression. The BTK deficiency weakened the aforementioned behaviors of TC cells and blocked the MAPK signaling pathway, however, these effects were counteracted by GNA15 overexpression. Collectively, GNA15 contributes to the malignant development of TC cells by binding to BTK and thus activating the MAPK signaling pathway.
Collapse
Affiliation(s)
- Yihan Sun
- Neck Surgery Department, The 2nd School of Medicine, WMU/The 2nd Affiliated Hospital and Yuying Children's Hospital of WMU, Longwan District, Wenzhou City, Zhejiang Province, China
| | - Yifan Han
- Neck Surgery Department, The 2nd School of Medicine, WMU/The 2nd Affiliated Hospital and Yuying Children's Hospital of WMU, Longwan District, Wenzhou City, Zhejiang Province, China.
| |
Collapse
|
2
|
Zhan F, Guo Y, He L. A novel defined programmed cell death related gene signature for predicting the prognosis of serous ovarian cancer. J Ovarian Res 2024; 17:92. [PMID: 38685095 PMCID: PMC11057167 DOI: 10.1186/s13048-024-01419-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/19/2024] [Indexed: 05/02/2024] Open
Abstract
PURPOSE This study aims to explore the contribution of differentially expressed programmed cell death genes (DEPCDGs) to the heterogeneity of serous ovarian cancer (SOC) through single-cell RNA sequencing (scRNA-seq) and assess their potential as predictors for clinical prognosis. METHODS SOC scRNA-seq data were extracted from the Gene Expression Omnibus database, and the principal component analysis was used for cell clustering. Bulk RNA-seq data were employed to analyze SOC-associated immune cell subsets key genes. CIBERSORT and single-sample gene set enrichment analysis (ssGSEA) were utilized to calculate immune cell scores. Prognostic models and nomograms were developed through univariate and multivariate Cox analyses. RESULTS Our analysis revealed that 48 DEPCDGs are significantly correlated with apoptotic signaling and oxidative stress pathways and identified seven key DEPCDGs (CASP3, GADD45B, GNA15, GZMB, IL1B, ISG20, and RHOB) through survival analysis. Furthermore, eight distinct cell subtypes were characterized using scRNA-seq. It was found that G protein subunit alpha 15 (GNA15) exhibited low expression across these subtypes and a strong association with immune cells. Based on the DEGs identified by the GNA15 high- and low-expression groups, a prognostic model comprising eight genes with significant prognostic value was constructed, effectively predicting patient overall survival. Additionally, a nomogram incorporating the RS signature, age, grade, and stage was developed and validated using two large SOC datasets. CONCLUSION GNA15 emerged as an independent and excellent prognostic marker for SOC patients. This study provides valuable insights into the prognostic potential of DEPCDGs in SOC, presenting new avenues for personalized treatment strategies.
Collapse
Affiliation(s)
- Feng Zhan
- College of Engineering, Fujian Jiangxia University, Fuzhou, Fujian, 350108, China
- School of Electronic Information Engineering, Taiyuan University of Science and Technology, Taiyuan, Shanxi, 030024, China
| | - Yina Guo
- School of Electronic Information Engineering, Taiyuan University of Science and Technology, Taiyuan, Shanxi, 030024, China
| | - Lidan He
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350004, China.
| |
Collapse
|
3
|
Triantafillidis JK, Georgiou K, Konstadoulakis MM, Papalois AE. Early-onset gastrointestinal cancer: An epidemiological reality with great significance and implications. World J Gastrointest Oncol 2024; 16:583-597. [PMID: 38577465 PMCID: PMC10989383 DOI: 10.4251/wjgo.v16.i3.583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/17/2023] [Accepted: 01/11/2024] [Indexed: 03/12/2024] Open
Abstract
During the last few years, epidemiological data from many countries suggest that the incidence and prevalence of many cancers of the digestive system are shifting from the older to the younger ages, the so-called "early-onset cancer". This is particularly evident in colorectal cancer and secondarily in other malignant digestive neoplasms, mainly stomach and in a lesser degree pancreas, and biliary tract. It should be emphasized that data concerning digestive neoplasms, except for those referring to the colon and stomach, could be characterized as rather insufficient. The exact magnitude of the shift in younger ages is expected to become clearer shortly, as long as relevant epidemiological data from many parts of the world would be available. The most important question concerns the etiology of this phenomenon, since its magnitude cannot be explained solely by the better diagnostic methodology and the preventive programs applied in many countries. The existing data support the assumption that a number of environmental factors may play a primary role in influencing carcinogenesis, sometimes from childhood. Changes that have appeared in the last decades related mainly to eating habits, consistency of gut microbiome and an increase of obese people interacting with genetic factors, ultimately favor the process of carcinogenesis. Even these factors however, are not entirely sufficient to explain the age-related changes in the frequency of digestive neoplasms. Studies of the individual effect of each of the already known factors or factors likely to be involved in the etiology of this phenomenon and studies using state-of-the-art technologies to accurately determine the degree of the population exposure to these factors are required. In this article, we attempt to describe the epidemiological data supporting the age-shifting of digestive malignancies and their possible pathogenesis. Finally, we propose some measures regarding the attitude of the scientific community to this alarming phenomenon.
Collapse
Affiliation(s)
- John K Triantafillidis
- Department of IBD and GI Endoscopy, Metropolitan General Hospital, Holargos 15562, Athens, Greece. Hellenic Society for Gastrointestinal Oncology, 354 Iera Odos, Chaidari 12461, Attica, Greece
| | - Konstantinos Georgiou
- 2nd Department of Surgery, University of Athens School of Medicine, Aretaieion Hospital, Athens 11528, Greece
| | - Manousos M Konstadoulakis
- 2nd Department of Surgery, University of Athens School of Medicine, Aretaieion Hospital, Athens 11528, Greece
| | - Apostolos E Papalois
- 2nd Department of Surgery, University of Athens School of Medicine, Aretaieion Hospital, Athens 11528, Greece
| |
Collapse
|
4
|
Park R, Lee S, Chin H, Nguyen ATQ, Lee D. Tumor-Promoting Role of GNA14 in Colon Cancer Development. Cancers (Basel) 2023; 15:4572. [PMID: 37760541 PMCID: PMC10527020 DOI: 10.3390/cancers15184572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Recent studies have shown that mutations in members of the G-protein α family contribute to the onset and progression of cancer. However, the role of GNA14 in CRC remains unknown. In this study, we examined the effect of GNA14 on CRC through genetic approaches in vitro and in vivo. We found that GNA14 knockdown by small interfering RNA (siRNA) inhibited the proliferation of CRC cells SW403 and HT29. Gna14 knockout mice developed normally without obvious abnormalities. However, the number of polyps in the small intestine was significantly reduced in Gna14 knockout mice compared to control mice after mating with ApcMin mice, a representative CRC mouse model. In particular, deletion of the Gna14 inhibited polyp growth, especially in the distal end of the small intestine. Histological examination showed that Gna14 knockout mice suppressed malignant tumor progression due to decreased proliferation and increased apoptosis in polyps compared to controls. In addition, GNA14 knockdown in CRC cells resulted in downregulation of ERK phosphorylation and β-catenin and β-catenin phosphorylation at S675. Similarly, ERK phosphorylation and phospho-β-catenin phosphorylation at S675 were decreased in polyps of Gna14 knockout mice. Collectively, these analyses show that GNA14 may accelerate CRC cell proliferation and malignant tumor progression through ERK and β-catenin pathways.
Collapse
Affiliation(s)
| | | | | | | | - Daekee Lee
- Department of Life Science, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
5
|
Janikowska G, Janikowski T, Plato M, Mazurek U, Orchel J, Opiłka M, Lorenc Z. Histaminergic System and Inflammation-Related Genes in Normal Large Intestine and Adenocarcinoma Tissues: Transcriptional Profiles and Relations. Int J Mol Sci 2023; 24:4913. [PMID: 36902343 PMCID: PMC10002554 DOI: 10.3390/ijms24054913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
Transcriptional analyses such as microarray data have contributed to the progress in the diagnostics and therapy of colorectal cancer (CRC). The need for such research is still present because of the disease being common in both men and women with a high second position in cancer rankings. Little is known about the relations between the histaminergic system and inflammation in the large intestine and CRC. Therefore, the aim of this study was to evaluate the expression of genes related to the histaminergic system and inflammation in the CRC tissues at three cancer development designs: all tested CRC samples, low (LCS) and high (HCS) clinical stage, and four clinical stages (CSI-CSIV), to the control. The research was carried out at the transcriptomic level, analysing hundreds of mRNAs from microarrays, as well as carrying out RT-PCR analysis of histaminergic receptors. The following histaminergic mRNAs: GNA15, MAOA, WASF2A, and inflammation-related: AEBP1, CXCL1, CXCL2, CXCL3, CXCL8, SPHK1, TNFAIP6, were distinguished. Among all analysed transcripts, AEBP1 can be considered the most promising diagnostic marker in the early stage of CRC. The results showed 59 correlations between differentiating genes of the histaminergic system and inflammation in the control, control and CRC, and CRC. The tests confirmed the presence of all histamine receptor transcripts in both the control and colorectal adenocarcinoma. Significant differences in expression were stated for HRH2 and HRH3 in the advanced stages of CRC adenocarcinoma. The relations between the histaminergic system and inflammation-linked genes in both the control and the CRC have been observed.
Collapse
Affiliation(s)
- Grażyna Janikowska
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jagiellońska 4 Street, 41-200 Sosnowiec, Poland
| | - Tomasz Janikowski
- Silesian College of Medicine in Katowice, Mickiewicza 29 Street, 40-085 Katowice, Poland
| | - Marta Plato
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jedności 8 Street, 41-206 Sosnowiec, Poland
| | - Urszula Mazurek
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jedności 8 Street, 41-206 Sosnowiec, Poland
- The Karol Godula Upper Silesian Academy of Entrepreneurship in Chorzów, Racławicka 23 Street, 41-506 Chorzów, Poland
| | - Joanna Orchel
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jedności 8 Street, 41-206 Sosnowiec, Poland
- Katalyst Laboratories, London W1D 3QL, UK
| | - Mieszko Opiłka
- Clinical Department of General, Colorectal and Multiple Organ Trauma Surgery, Faculty of Health Sciences, Medical University of Silesia, Medyków 1 Square, 41-200 Sosnowiec, Poland
| | - Zbigniew Lorenc
- Clinical Department of General, Colorectal and Multiple Organ Trauma Surgery, Faculty of Health Sciences, Medical University of Silesia, Medyków 1 Square, 41-200 Sosnowiec, Poland
| |
Collapse
|
6
|
Li M, Ding W, Wang Y, Ma Y, Du F. Development and validation of a gene signature for pancreatic cancer: based on inflammatory response-related genes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:17166-17178. [PMID: 36192587 DOI: 10.1007/s11356-022-23252-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Pancreatic cancer (PC) is one of the most common malignant tumors in the world with a poor prognosis. There were limited studies investigating the genetic signatures associated with inflammatory responses, tumor microenvironment (TME), and tumor drug sensitivity prediction. In the Cancer Genome Atlas (TCGA) dataset, we constructed an inflammatory response-related genes prognostic signature for PC, and predictive ability of the model was assessed via the International Cancer Genome Consortium (ICGC) database. Then, we explored the differences of TME, immune checkpoint genes and drug resistance genes, and the cancer cell sensitivity to chemotherapy drugs between different risk score group. Based on the TCGA and ICGC databases, we constructed and validated a prognostic model, which consisted of 5 genes (including AHR, F3, GNA15, IL18, and INHBA). Moreover, the prognostic model was independent prognostic factors affecting overall survival (OS). The low-risk score group had better OS, and lower stromal score, compared with patients in the high-risk score group. The difference of antigen-presenting cells, T cell regulation, and drug resistance genes between different risk score groups was found. In addition, the immune checkpoint genes were positively correlation to risk score. The expression levels of AHR, GNA15, IL18, and INHBA were related to the sensitivity of anti-tumor chemotherapy drugs. Gene set enrichment analysis (GSEA) showed significant pathway such as calcium signaling pathway and p53 signaling pathway. We successfully constructed a 5-inflammatory response-related gene signature to predict survival, TME, and cancer cell sensitivity to chemotherapy drugs in PC patients. Furthermore, substantiation was warranted to verify the role of these genes in tumorigenesis.
Collapse
Affiliation(s)
- Manjiang Li
- Department of Hepatobiliary & Pancreatic Surgery, Weifang People's Hospital, No. 151 of Guangwen Street, Weifang, 261041, Shandong Province, People's Republic of China
| | - Wei Ding
- Department of Hepatobiliary & Pancreatic Surgery, Weifang People's Hospital, No. 151 of Guangwen Street, Weifang, 261041, Shandong Province, People's Republic of China
| | - Yuxu Wang
- Department of Hepatobiliary & Pancreatic Surgery, Weifang People's Hospital, No. 151 of Guangwen Street, Weifang, 261041, Shandong Province, People's Republic of China
| | - Yongbiao Ma
- Department of Hepatobiliary & Pancreatic Surgery, Weifang People's Hospital, No. 151 of Guangwen Street, Weifang, 261041, Shandong Province, People's Republic of China
| | - Futian Du
- Department of Hepatobiliary & Pancreatic Surgery, Weifang People's Hospital, No. 151 of Guangwen Street, Weifang, 261041, Shandong Province, People's Republic of China.
| |
Collapse
|
7
|
Xie Y, Li J, Tao Q, Zeng C, Chen Y. Identification of a Diagnosis and Therapeutic Inflammatory Response-Related Gene Signature Associated with Esophageal Adenocarcinoma. Crit Rev Eukaryot Gene Expr 2023; 33:65-80. [PMID: 37602454 DOI: 10.1615/critreveukaryotgeneexpr.2023048608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
The purpose of this study is to identify the key regulatory genes related to the inflammatory response of esophageal adenocarcinoma (EAC) and to find new diagnosis and therapeutic options. We downloaded the dataset GSE72874 from the Gene Expression Omnibus database for this study. Weighted gene co-expression network analysis (WGCNA) and differentially expressed genes (DEGs) analysis were used to find common inflammatory response-related genes (IRRGs) in EAC. The relationship between normal and tumor immune infiltration was analyzed using an online database of CIBERSORTx. Finally, 920 DEGs were identified, of which 5 genes were key IRRGs associated with EAC, including three down-regulated genes GNA15, MXD1, and NOD2, and two down-regulated genes PLAUR and TIMP1. Further research found that GNA15, MXD1, and NOD2 were down-regulated, PLAUR and TIMP1 were up-regulated in Barrett's esophagus (BE). In addition, we found that the expression of GNA15 and MXD1 in normal esophageal squamous epithelial cells decreased after ethanol treatment, while the expression of PLAUR and TIMP1 increased after ethanol treatment. Compared with normal esophageal tissue, immune cells infiltrated such as plasma cells, macrophages M0, macrophages M1, macrophages M2, dendritic cells activated, and mast cells activated were significantly increased in EAC, while immune cells infiltrated such as T cells CD4 memory resting, T cells follicular helper, NK cells resting, and dendritic cells resting were significantly reduced. The receiver operating characteristic curve indicated that GNA15, MXD1, NOD2, PLAUR and TIMP1 expression had a performed well in diagnosing EAC from healthy control. GNA15, MXD1, NOD2, PLAUR and TIMP1 were identified and validated as novel potential biomarkers for early diagnosis and may be new molecular targets for treatment of EAC.
Collapse
Affiliation(s)
- Yang Xie
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jun Li
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qing Tao
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chunyan Zeng
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China; Jiangxi Provincial Key Laboratory of Interdisciplinary Science, Nanchang University, Nanchang China
| | - Youxiang Chen
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|