1
|
Danilatou V, Dimopoulos D, Kostoulas T, Douketis J. Machine Learning-Based Predictive Models for Patients with Venous Thromboembolism: A Systematic Review. Thromb Haemost 2024; 124:1040-1052. [PMID: 38574756 DOI: 10.1055/a-2299-4758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
BACKGROUND Venous thromboembolism (VTE) is a chronic disorder with a significant health and economic burden. Several VTE-specific clinical prediction models (CPMs) have been used to assist physicians in decision-making but have several limitations. This systematic review explores if machine learning (ML) can enhance CPMs by analyzing extensive patient data derived from electronic health records. We aimed to explore ML-CPMs' applications in VTE for risk stratification, outcome prediction, diagnosis, and treatment. METHODS Three databases were searched: PubMed, Google Scholar, and IEEE electronic library. Inclusion criteria focused on studies using structured data, excluding non-English publications, studies on non-humans, and certain data types such as natural language processing and image processing. Studies involving pregnant women, cancer patients, and children were also excluded. After excluding irrelevant studies, a total of 77 studies were included. RESULTS Most studies report that ML-CPMs outperformed traditional CPMs in terms of receiver operating area under the curve in the four clinical domains that were explored. However, the majority of the studies were retrospective, monocentric, and lacked detailed model architecture description and external validation, which are essential for quality audit. This review identified research gaps and highlighted challenges related to standardized reporting, reproducibility, and model comparison. CONCLUSION ML-CPMs show promise in improving risk assessment and individualized treatment recommendations in VTE. Apparently, there is an urgent need for standardized reporting and methodology for ML models, external validation, prospective and real-world data studies, as well as interventional studies to evaluate the impact of artificial intelligence in VTE.
Collapse
Affiliation(s)
- Vasiliki Danilatou
- School of Medicine, European University of Cyprus, Nicosia, Cyprus
- Healthcare Division, Sphynx Technology Solutions, Nicosia, Cyprus
| | - Dimitrios Dimopoulos
- School of Engineering, Department of Information and Communication Systems Engineering, University of the Aegean, North Aegean, Greece
| | - Theodoros Kostoulas
- School of Engineering, Department of Information and Communication Systems Engineering, University of the Aegean, North Aegean, Greece
| | - James Douketis
- Department of Medicine, McMaster University, Hamilton, Canada
- Department of Medicine, St. Joseph's Healthcare Hamilton, Ontario, Canada
| |
Collapse
|
2
|
Jia B, Chen J, Luan Y, Wang H, Wei Y, Hu Y. Artificial intelligence and atrial fibrillation: A bibliometric analysis from 2013 to 2023. Heliyon 2024; 10:e35067. [PMID: 39157317 PMCID: PMC11328043 DOI: 10.1016/j.heliyon.2024.e35067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/12/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024] Open
Abstract
Background In the study of atrial fibrillation (AF), a prevalent cardiac arrhythmia, the utilization of artificial intelligence (AI) in diagnostic and therapeutic strategies holds the potential to address existing limitations. This research employs bibliometrics to objectively investigate research hotspots, development trends, and existing issues in the application of AI within the AF field, aiming to provide targeted recommendations for relevant researchers. Methods Relevant publications on the application of AI in AF field were retrieved from the Web of Science Core Collection (WoSCC) database from 2013 to 2023. The bibliometric analysis was conducted by the R (4.2.2) "bibliometrix" package and VOSviewer(1.6.19). Results Analysis of 912 publications reveals that the field of AI in AF is currently experiencing rapid development. The United States, China, and the United Kingdom have made outstanding contributions to this field. Acharya UR is a notable contributor and pioneer in the area. The following topics have been elucidated: AI's application in managing the risk of AF complications is a hot mature topic; AI-electrocardiograph for AF diagnosis and AI-assisted catheter ablation surgery are the emerging and booming topics; smart wearables for real-time AF monitoring and AI for individualized AF medication are niche and well-developed topics. Conclusion This study offers comprehensive analysis of the origin, current status, and future trends of AI applications in AF, aiming to advance the development of the field.
Collapse
Affiliation(s)
- Bochao Jia
- Department of Cardiovascular Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jiafan Chen
- Department of Cardiovascular Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yujie Luan
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Huan Wang
- Department of Cardiovascular Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yi Wei
- Department of Cardiovascular Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yuanhui Hu
- Department of Cardiovascular Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| |
Collapse
|
3
|
Xue L, He S, Singla RK, Qin Q, Ding Y, Liu L, Ding X, Bediaga-Bañeres H, Arrasate S, Durado-Sanchez A, Zhang Y, Shen Z, Shen B, Miao L, González-Díaz H. Machine learning guided prediction of warfarin blood levels for personalized medicine based on clinical longitudinal data from cardiac surgery patients: a prospective observational study. Int J Surg 2024; 110:01279778-990000000-01621. [PMID: 38833337 PMCID: PMC11487003 DOI: 10.1097/js9.0000000000001734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/19/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Warfarin is a common oral anticoagulant, and its effects vary widely among individuals. Numerous dose-prediction algorithms have been reported based on cross-sectional data generated via multiple linear regression or machine learning. This study aimed to construct an information fusion perturbation theory and machine learning prediction model of warfarin blood levels based on clinical longitudinal data from cardiac surgery patients. METHODS AND MATERIAL The data of 246 patients were obtained from electronic medical records. Continuous variables were processed by calculating the distance of the raw data with the moving average (MA ∆vki(sj)), and categorical variables in different attribute groups were processed using Euclidean distance (ED ǁ∆vk(sj)ǁ). Regression and classification analyses were performed on the raw data, MA ∆vki(sj), and ED ǁ∆vk(sj)ǁ. Different machine-learning algorithms were chosen for the STATISTICA and WEKA software. RESULTS The random forest (RF) algorithm was the best for predicting continuous outputs using the raw data. The correlation coefficients of the RF algorithm were 0.978 and 0.595 for the training and validation sets, respectively, and the mean absolute errors were 0.135 and 0.362 for the training and validation sets, respectively. The proportion of ideal predictions of the RF algorithm was 59.0%. General discriminant analysis (GDA) was the best algorithm for predicting the categorical outputs using the MA ∆vki(sj) data. The GDA algorithm's total true positive rate (TPR) was 95.4% and 95.6% for the training and validation sets, respectively, with MA ∆vki(sj) data. CONCLUSIONS An information fusion perturbation theory and machine learning model for predicting warfarin blood levels was established. A model based on the RF algorithm could be used to predict the target international normalized ratio (INR), and a model based on the GDA algorithm could be used to predict the probability of being within the target INR range under different clinical scenarios.
Collapse
Affiliation(s)
- Ling Xue
- Department of Pharmacy, the First Affiliated Hospital of Soochow University
- Department of Pharmacology, Faculty of Medicine, University of The Basque Country (UPV/EHU), Bilbao, Basque Country
| | - Shan He
- Department of Organic and Inorganic Chemistry, Faculty of Science and Technology, University of The Basque Country (UPV/EHU), Bilbao, Basque Country, Spain
- IKERDATA S.L., ZITEK, University of The Basque Country (UPV/EHU), Bilbao, Basque Country
| | - Rajeev K. Singla
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Qiong Qin
- Department of Pharmacy, the First Affiliated Hospital of Soochow University
| | - Yinglong Ding
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Soochow University
- Institute for Cardiovascular Science, Soochow University
| | - Linsheng Liu
- Department of Pharmacy, the First Affiliated Hospital of Soochow University
| | - Xiaoliang Ding
- Department of Pharmacy, the First Affiliated Hospital of Soochow University
| | - Harbil Bediaga-Bañeres
- IKERDATA S.L., ZITEK, University of The Basque Country (UPV/EHU), Bilbao, Basque Country
- Department of Painting, Faculty of Fine Arts, University of the Basque Country UPV/EHU, 48940, Leioa, Biscay
| | - Sonia Arrasate
- Department of Organic and Inorganic Chemistry, Faculty of Science and Technology, University of The Basque Country (UPV/EHU), Bilbao, Basque Country, Spain
| | - Aliuska Durado-Sanchez
- IKERDATA S.L., ZITEK, University of The Basque Country (UPV/EHU), Bilbao, Basque Country
- Department of Public Law, Faculty of Law, University of The Basque Country (UPV/EHU), Leioa, Biscay, Basque, Country
| | - Yuzhen Zhang
- Department of Cardiology, the First Affiliated Hospital of Soochow University
| | - Zhenya Shen
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Soochow University
- Institute for Cardiovascular Science, Soochow University
| | - Bairong Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Liyan Miao
- Department of Pharmacy, the First Affiliated Hospital of Soochow University
- Institute for Interdisciplinary Drug Research and Translational Sciences, Soochow University
| | - Humberto González-Díaz
- Department of Organic and Inorganic Chemistry, Faculty of Science and Technology, University of The Basque Country (UPV/EHU), Bilbao, Basque Country, Spain
- BIOFISIKA: Basque Center for Biophysics CSIC, University of The Basque Country (UPV/EHU), Bilbao, Basque Country
- IKERBASQUE, Basque Foundation for Science, Bilbao, Basque Country, Spain
| |
Collapse
|
4
|
Xue L, Singla RK, He S, Arrasate S, González-Díaz H, Miao L, Shen B. Warfarin-A natural anticoagulant: A review of research trends for precision medication. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155479. [PMID: 38493714 DOI: 10.1016/j.phymed.2024.155479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/29/2024] [Accepted: 02/22/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Warfarin is a widely prescribed anticoagulant in the clinic. It has a more considerable individual variability, and many factors affect its variability. Mathematical models can quantify the quantitative impact of these factors on individual variability. PURPOSE The aim is to comprehensively analyze the advanced warfarin dosing algorithm based on pharmacometrics and machine learning models of personalized warfarin dosage. METHODS A bibliometric analysis of the literature retrieved from PubMed and Scopus was performed using VOSviewer. The relevant literature that reported the precise dosage of warfarin calculation was retrieved from the database. The multiple linear regression (MLR) algorithm was excluded because a recent systematic review that mainly reviewed this algorithm has been reported. The following terms of quantitative systems pharmacology, mechanistic model, physiologically based pharmacokinetic model, artificial intelligence, machine learning, pharmacokinetic, pharmacodynamic, pharmacokinetics, pharmacodynamics, and warfarin were added as MeSH Terms or appearing in Title/Abstract into query box of PubMed, then humans and English as filter were added to retrieve the literature. RESULTS Bibliometric analysis revealed important co-occuring MeShH and index keywords. Further, the United States, China, and the United Kingdom were among the top countries contributing in this domain. Some studies have established personalized warfarin dosage models using pharmacometrics and machine learning-based algorithms. There were 54 related studies, including 14 pharmacometric models, 31 artificial intelligence models, and 9 model evaluations. Each model has its advantages and disadvantages. The pharmacometric model contains biological or pharmacological mechanisms in structure. The process of pharmacometric model development is very time- and labor-intensive. Machine learning is a purely data-driven approach; its parameters are more mathematical and have less biological interpretation. However, it is faster, more efficient, and less time-consuming. Most published models of machine learning algorithms were established based on cross-sectional data sourced from the database. CONCLUSION Future research on personalized warfarin medication should focus on combining the advantages of machine learning and pharmacometrics algorithms to establish a more robust warfarin dosage algorithm. Randomized controlled trials should be performed to evaluate the established algorithm of warfarin dosage. Moreover, a more user-friendly and accessible warfarin precision medicine platform should be developed.
Collapse
Affiliation(s)
- Ling Xue
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China; Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, China; Department of Pharmacology, Faculty of Medicine, University of The Basque Country (UPV/EHU), Bilbao, Basque Country, Spain
| | - Rajeev K Singla
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab-144411, India
| | - Shan He
- IKERDATA S.l., ZITEK, University of The Basque Country (UPVEHU), Rectorate Building, 48940, Bilbao, Basque Country, Spain; Department of Organic and Inorganic Chemistry, Faculty of Science and Technology, University of The Basque Country (UPV/EHU), P.O. Box 644, 48080, Bilbao, Basque Country, Spain
| | - Sonia Arrasate
- Department of Organic and Inorganic Chemistry, Faculty of Science and Technology, University of The Basque Country (UPV/EHU), P.O. Box 644, 48080, Bilbao, Basque Country, Spain
| | - Humberto González-Díaz
- Department of Organic and Inorganic Chemistry, Faculty of Science and Technology, University of The Basque Country (UPV/EHU), P.O. Box 644, 48080, Bilbao, Basque Country, Spain; BIOFISIKA: Basque Center for Biophysics CSIC, University of The Basque Country (UPV/EHU), Barrio Sarriena s/n, Leioa, Bizkaia 48940, Basque Country, Spain; IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Basque Country, Spain
| | - Liyan Miao
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute for Interdisciplinary Drug Research and Translational Sciences, Soochow University, Suzhou, China; College of Pharmaceutical Sciences, Soochow University, Suzhou, China.
| | - Bairong Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
5
|
Petch J, Nelson W, Wu M, Ghassemi M, Benz A, Fatemi M, Di S, Carnicelli A, Granger C, Giugliano R, Hong H, Patel M, Wallentin L, Eikelboom J, Connolly SJ. Optimizing warfarin dosing for patients with atrial fibrillation using machine learning. Sci Rep 2024; 14:4516. [PMID: 38402362 PMCID: PMC10894214 DOI: 10.1038/s41598-024-55110-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 02/20/2024] [Indexed: 02/26/2024] Open
Abstract
While novel oral anticoagulants are increasingly used to reduce risk of stroke in patients with atrial fibrillation, vitamin K antagonists such as warfarin continue to be used extensively for stroke prevention across the world. While effective in reducing the risk of strokes, the complex pharmacodynamics of warfarin make it difficult to use clinically, with many patients experiencing under- and/or over- anticoagulation. In this study we employed a novel implementation of deep reinforcement learning to provide clinical decision support to optimize time in therapeutic International Normalized Ratio (INR) range. We used a novel semi-Markov decision process formulation of the Batch-Constrained deep Q-learning algorithm to develop a reinforcement learning model to dynamically recommend optimal warfarin dosing to achieve INR of 2.0-3.0 for patients with atrial fibrillation. The model was developed using data from 22,502 patients in the warfarin treated groups of the pivotal randomized clinical trials of edoxaban (ENGAGE AF-TIMI 48), apixaban (ARISTOTLE) and rivaroxaban (ROCKET AF). The model was externally validated on data from 5730 warfarin-treated patients in a fourth trial of dabigatran (RE-LY) using multilevel regression models to estimate the relationship between center-level algorithm consistent dosing, time in therapeutic INR range (TTR), and a composite clinical outcome of stroke, systemic embolism or major hemorrhage. External validation showed a positive association between center-level algorithm-consistent dosing and TTR (R2 = 0.56). Each 10% increase in algorithm-consistent dosing at the center level independently predicted a 6.78% improvement in TTR (95% CI 6.29, 7.28; p < 0.001) and a 11% decrease in the composite clinical outcome (HR 0.89; 95% CI 0.81, 1.00; p = 0.015). These results were comparable to those of a rules-based clinical algorithm used for benchmarking, for which each 10% increase in algorithm-consistent dosing independently predicted a 6.10% increase in TTR (95% CI 5.67, 6.54, p < 0.001) and a 10% decrease in the composite outcome (HR 0.90; 95% CI 0.83, 0.98, p = 0.018). Our findings suggest that a deep reinforcement learning algorithm can optimize time in therapeutic range for patients taking warfarin. A digital clinical decision support system to promote algorithm-consistent warfarin dosing could optimize time in therapeutic range and improve clinical outcomes in atrial fibrillation globally.
Collapse
Affiliation(s)
- Jeremy Petch
- Centre for Data Science and Digital Health, Hamilton Health Sciences, Hamilton, ON, Canada.
- Population Health Research Institute, Hamilton, ON, Canada.
- Division of Cardiology, Department of Medicine, McMaster University, Hamilton, ON, Canada.
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada.
| | - Walter Nelson
- Centre for Data Science and Digital Health, Hamilton Health Sciences, Hamilton, ON, Canada
- Department of Statistical Sciences, University of Toronto, Toronto, ON, Canada
| | - Mary Wu
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | - Marzyeh Ghassemi
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical and Evaluative Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Vector Institute, Toronto, ON, Canada
| | - Alexander Benz
- Population Health Research Institute, Hamilton, ON, Canada
- Department of Cardiology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | | | - Shuang Di
- Centre for Data Science and Digital Health, Hamilton Health Sciences, Hamilton, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Anthony Carnicelli
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
- Duke Clinical Research Institute, Duke University, Durham, NC, USA
| | - Christopher Granger
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
- Duke Clinical Research Institute, Duke University, Durham, NC, USA
| | - Robert Giugliano
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hwanhee Hong
- Duke Clinical Research Institute, Duke University, Durham, NC, USA
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Manesh Patel
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Lars Wallentin
- Department of Medical Sciences, Cardiology, Uppsala University, Uppsala, Sweden
- Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| | - John Eikelboom
- Population Health Research Institute, Hamilton, ON, Canada
- Division of Hematology and Thromboembolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Stuart J Connolly
- Population Health Research Institute, Hamilton, ON, Canada
- Division of Cardiology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
6
|
Dryden L, Song J, Valenzano TJ, Yang Z, Debnath M, Lin R, Topolovec-Vranic J, Mamdani M, Antoniou T. Evaluation of Machine Learning Approaches for Predicting Warfarin Discharge Dose in Cardiac Surgery Patients: Retrospective Algorithm Development and Validation Study. JMIR Cardio 2023; 7:e47262. [PMID: 38055310 PMCID: PMC10733832 DOI: 10.2196/47262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND Warfarin dosing in cardiac surgery patients is complicated by a heightened sensitivity to the drug, predisposing patients to adverse events. Predictive algorithms are therefore needed to guide warfarin dosing in cardiac surgery patients. OBJECTIVE This study aimed to develop and validate an algorithm for predicting the warfarin dose needed to attain a therapeutic international normalized ratio (INR) at the time of discharge in cardiac surgery patients. METHODS We abstracted variables influencing warfarin dosage from the records of 1031 encounters initiating warfarin between April 1, 2011, and November 29, 2019, at St Michael's Hospital in Toronto, Ontario, Canada. We compared the performance of penalized linear regression, k-nearest neighbors, random forest regression, gradient boosting, multivariate adaptive regression splines, and an ensemble model combining the predictions of the 5 regression models. We developed and validated separate models for predicting the warfarin dose required for achieving a discharge INR of 2.0-3.0 in patients undergoing all forms of cardiac surgery except mechanical mitral valve replacement and a discharge INR of 2.5-3.5 in patients receiving a mechanical mitral valve replacement. For the former, we selected 80% of encounters (n=780) who had initiated warfarin during their hospital admission and had achieved a target INR of 2.0-3.0 at the time of discharge as the training cohort. Following 10-fold cross-validation, model accuracy was evaluated in a test cohort comprised solely of cardiac surgery patients. For patients requiring a target INR of 2.5-3.5 (n=165), we used leave-p-out cross-validation (p=3 observations) to estimate model performance. For each approach, we determined the mean absolute error (MAE) and the proportion of predictions within 20% of the true warfarin dose. We retrospectively evaluated the best-performing algorithm in clinical practice by comparing the proportion of cardiovascular surgery patients discharged with a therapeutic INR before (April 2011 and July 2019) and following (September 2021 and May 2, 2022) its implementation in routine care. RESULTS Random forest regression was the best-performing model for patients with a target INR of 2.0-3.0, an MAE of 1.13 mg, and 39.5% of predictions of falling within 20% of the actual therapeutic discharge dose. For patients with a target INR of 2.5-3.5, the ensemble model performed best, with an MAE of 1.11 mg and 43.6% of predictions being within 20% of the actual therapeutic discharge dose. The proportion of cardiovascular surgery patients discharged with a therapeutic INR before and following implementation of these algorithms in clinical practice was 47.5% (305/641) and 61.1% (11/18), respectively. CONCLUSIONS Machine learning algorithms based on routinely available clinical data can help guide initial warfarin dosing in cardiac surgery patients and optimize the postsurgical anticoagulation of these patients.
Collapse
Affiliation(s)
| | | | | | - Zhen Yang
- Unity Health Toronto, Toronto, ON, Canada
| | | | | | | | | | | |
Collapse
|
7
|
Alowais SA, Alghamdi SS, Alsuhebany N, Alqahtani T, Alshaya AI, Almohareb SN, Aldairem A, Alrashed M, Bin Saleh K, Badreldin HA, Al Yami MS, Al Harbi S, Albekairy AM. Revolutionizing healthcare: the role of artificial intelligence in clinical practice. BMC MEDICAL EDUCATION 2023; 23:689. [PMID: 37740191 PMCID: PMC10517477 DOI: 10.1186/s12909-023-04698-z] [Citation(s) in RCA: 174] [Impact Index Per Article: 174.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
INTRODUCTION Healthcare systems are complex and challenging for all stakeholders, but artificial intelligence (AI) has transformed various fields, including healthcare, with the potential to improve patient care and quality of life. Rapid AI advancements can revolutionize healthcare by integrating it into clinical practice. Reporting AI's role in clinical practice is crucial for successful implementation by equipping healthcare providers with essential knowledge and tools. RESEARCH SIGNIFICANCE This review article provides a comprehensive and up-to-date overview of the current state of AI in clinical practice, including its potential applications in disease diagnosis, treatment recommendations, and patient engagement. It also discusses the associated challenges, covering ethical and legal considerations and the need for human expertise. By doing so, it enhances understanding of AI's significance in healthcare and supports healthcare organizations in effectively adopting AI technologies. MATERIALS AND METHODS The current investigation analyzed the use of AI in the healthcare system with a comprehensive review of relevant indexed literature, such as PubMed/Medline, Scopus, and EMBASE, with no time constraints but limited to articles published in English. The focused question explores the impact of applying AI in healthcare settings and the potential outcomes of this application. RESULTS Integrating AI into healthcare holds excellent potential for improving disease diagnosis, treatment selection, and clinical laboratory testing. AI tools can leverage large datasets and identify patterns to surpass human performance in several healthcare aspects. AI offers increased accuracy, reduced costs, and time savings while minimizing human errors. It can revolutionize personalized medicine, optimize medication dosages, enhance population health management, establish guidelines, provide virtual health assistants, support mental health care, improve patient education, and influence patient-physician trust. CONCLUSION AI can be used to diagnose diseases, develop personalized treatment plans, and assist clinicians with decision-making. Rather than simply automating tasks, AI is about developing technologies that can enhance patient care across healthcare settings. However, challenges related to data privacy, bias, and the need for human expertise must be addressed for the responsible and effective implementation of AI in healthcare.
Collapse
Affiliation(s)
- Shuroug A Alowais
- Department of Pharmacy Practice, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Prince Mutib Ibn Abdullah Ibn Abdulaziz Rd, Riyadh, 14611, Saudi Arabia.
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.
- Pharmaceutical Care Department, King Abdulaziz Medical City, National Guard Health Affairs, Riyadh, Saudi Arabia.
| | - Sahar S Alghamdi
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Pharmaceutical Care Department, King Abdulaziz Medical City, National Guard Health Affairs, Riyadh, Saudi Arabia
- Department of Pharmaceutical Sciences, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Nada Alsuhebany
- Department of Pharmacy Practice, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Prince Mutib Ibn Abdullah Ibn Abdulaziz Rd, Riyadh, 14611, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Pharmaceutical Care Department, King Abdulaziz Medical City, National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Tariq Alqahtani
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Pharmaceutical Care Department, King Abdulaziz Medical City, National Guard Health Affairs, Riyadh, Saudi Arabia
- Department of Pharmaceutical Sciences, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Abdulrahman I Alshaya
- Department of Pharmacy Practice, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Prince Mutib Ibn Abdullah Ibn Abdulaziz Rd, Riyadh, 14611, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Pharmaceutical Care Department, King Abdulaziz Medical City, National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Sumaya N Almohareb
- Department of Pharmacy Practice, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Prince Mutib Ibn Abdullah Ibn Abdulaziz Rd, Riyadh, 14611, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Pharmaceutical Care Department, King Abdulaziz Medical City, National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Atheer Aldairem
- Department of Pharmacy Practice, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Prince Mutib Ibn Abdullah Ibn Abdulaziz Rd, Riyadh, 14611, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Pharmaceutical Care Department, King Abdulaziz Medical City, National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Mohammed Alrashed
- Department of Pharmacy Practice, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Prince Mutib Ibn Abdullah Ibn Abdulaziz Rd, Riyadh, 14611, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Pharmaceutical Care Department, King Abdulaziz Medical City, National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Khalid Bin Saleh
- Department of Pharmacy Practice, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Prince Mutib Ibn Abdullah Ibn Abdulaziz Rd, Riyadh, 14611, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Pharmaceutical Care Department, King Abdulaziz Medical City, National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Hisham A Badreldin
- Department of Pharmacy Practice, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Prince Mutib Ibn Abdullah Ibn Abdulaziz Rd, Riyadh, 14611, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Pharmaceutical Care Department, King Abdulaziz Medical City, National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Majed S Al Yami
- Department of Pharmacy Practice, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Prince Mutib Ibn Abdullah Ibn Abdulaziz Rd, Riyadh, 14611, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Pharmaceutical Care Department, King Abdulaziz Medical City, National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Shmeylan Al Harbi
- Department of Pharmacy Practice, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Prince Mutib Ibn Abdullah Ibn Abdulaziz Rd, Riyadh, 14611, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Pharmaceutical Care Department, King Abdulaziz Medical City, National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Abdulkareem M Albekairy
- Department of Pharmacy Practice, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Prince Mutib Ibn Abdullah Ibn Abdulaziz Rd, Riyadh, 14611, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Pharmaceutical Care Department, King Abdulaziz Medical City, National Guard Health Affairs, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Zeng J, Shao J, Lin S, Zhang H, Su X, Lian X, Zhao Y, Ji X, Zheng Z. Optimizing the dynamic treatment regime of in-hospital warfarin anticoagulation in patients after surgical valve replacement using reinforcement learning. J Am Med Inform Assoc 2022; 29:1722-1732. [PMID: 35864720 DOI: 10.1093/jamia/ocac088] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/18/2022] [Accepted: 05/20/2022] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE Warfarin anticoagulation management requires sequential decision-making to adjust dosages based on patients' evolving states continuously. We aimed to leverage reinforcement learning (RL) to optimize the dynamic in-hospital warfarin dosing in patients after surgical valve replacement (SVR). MATERIALS AND METHODS 10 408 SVR cases with warfarin dosage-response data were retrospectively collected to develop and test an RL algorithm that can continuously recommend daily warfarin doses based on patients' evolving multidimensional states. The RL algorithm was compared with clinicians' actual practice and other machine learning and clinical decision rule-based algorithms. The primary outcome was the ratio of patients without in-hospital INRs >3.0 and the INR at discharge within the target range (1.8-2.5) (excellent responders). The secondary outcomes were the safety responder ratio (no INRs >3.0) and the target responder ratio (the discharge INR within 1.8-2.5). RESULTS In the test set (n = 1260), the excellent responder ratio under clinicians' guidance was significantly lower than the RL algorithm: 41.6% versus 80.8% (relative risk [RR], 0.51; 95% confidence interval [CI], 0.48-0.55), also the safety responder ratio: 83.1% versus 99.5% (RR, 0.83; 95% CI, 0.81-0.86), and the target responder ratio: 49.7% versus 81.1% (RR, 0.61; 95% CI, 0.58-0.65). The RL algorithms performed significantly better than all the other algorithms. Compared with clinicians' actual practice, the RL-optimized INR trajectory reached and maintained within the target range significantly faster and longer. DISCUSSION RL could offer interactive, practical clinical decision support for sequential decision-making tasks and is potentially adaptable for varied clinical scenarios. Prospective validation is needed. CONCLUSION An RL algorithm significantly optimized the post-operation warfarin anticoagulation quality compared with clinicians' actual practice, suggesting its potential for challenging sequential decision-making tasks.
Collapse
Affiliation(s)
- Juntong Zeng
- National Clinical Research Center of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing, People's Republic of China.,State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing, People's Republic of China.,Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jianzhun Shao
- Department of Automation, Tsinghua University, Beijing, People's Republic of China
| | - Shen Lin
- National Clinical Research Center of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing, People's Republic of China.,State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing, People's Republic of China.,Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.,Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing, People's Republic of China
| | - Hongchang Zhang
- Department of Automation, Tsinghua University, Beijing, People's Republic of China
| | - Xiaoting Su
- National Clinical Research Center of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing, People's Republic of China.,State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing, People's Republic of China.,Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Xiaocong Lian
- Department of Automation, Tsinghua University, Beijing, People's Republic of China.,Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, People's Republic of China
| | - Yan Zhao
- National Clinical Research Center of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing, People's Republic of China.,State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing, People's Republic of China
| | - Xiangyang Ji
- Department of Automation, Tsinghua University, Beijing, People's Republic of China.,Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, People's Republic of China
| | - Zhe Zheng
- National Clinical Research Center of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing, People's Republic of China.,State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing, People's Republic of China.,Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.,Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing, People's Republic of China.,National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Fuwai Central-China Hospital, Central-China Branch of National Center for Cardiovascular Diseases, Zhengzhou, People's Republic of China
| |
Collapse
|
9
|
Kuang Y, Liu Y, Pei Q, Ning X, Zou Y, Liu L, Song L, Guo C, Sun Y, Deng K, Zou C, Cao D, Cui Y, Wu C, Yang G. Long Short-Term Memory Network for Development and Simulation of Warfarin Dosing Model Based on Time Series Anticoagulant Data. Front Cardiovasc Med 2022; 9:881111. [PMID: 35647078 PMCID: PMC9130657 DOI: 10.3389/fcvm.2022.881111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/19/2022] [Indexed: 12/01/2022] Open
Abstract
Background Warfarin is an effective treatment for thromboembolic disease but has a narrow therapeutic index, and dosage can differ tremendously among individuals. The study aimed to develop an individualized international normalized ratio (INR) model based on time series anticoagulant data and simulate individualized warfarin dosing. Methods We used a long short-term memory (LSTM) network to develop an individualized INR model based on data from 4,578 follow-up visits, including clinical and genetic factors from 624 patients whom we enrolled in our previous randomized controlled trial. The data of 158 patients who underwent valvular surgery and were included in a prospective registry study were used for external validation in the real world. Results The prediction accuracy of LSTM_INR was 70.0%, which was much higher than that of MAPB_INR (maximum posterior Bayesian, 53.9%). Temporal variables were significant for LSTM_INR performance (51.7 vs. 70.0%, P < 0.05). Genetic factors played an important role in predicting INR at the onset of therapy, while after 15 days of treatment, we found that it might unnecessary to detect genotypes for warfarin dosing. Using LSTM_INR, we successfully simulated individualized warfarin dosing and developed an application (AI-WAR) for individualized warfarin therapy. Conclusion The results indicate that temporal variables are necessary to be considered in warfarin therapy, except for clinical factors and genetic factors. LSTM network may have great potential for long-term drug individualized therapy. Trial Registration NCT02211326; www.chictr.org.cn:ChiCTR2100052089.
Collapse
Affiliation(s)
- Yun Kuang
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yaxin Liu
- XiangYa School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Qi Pei
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoyi Ning
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yi Zou
- School of Mathematics and Statisics, Central South University, Changsha, China
| | - Liming Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Long Song
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chengxian Guo
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yuanyuan Sun
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Kunhong Deng
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Chan Zou
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Dongsheng Cao
- XiangYa School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, China
| | - Yimin Cui
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| | - Chengkun Wu
- State Key Laboratory of High Performance Computing, Institute for Quantum Information, College of Computer Science and Technology, National University of Defense Technology, Changsha, China
| | - Guoping Yang
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
- XiangYa School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, China
- National-Local Joint Engineering Laboratory of Drug Clinical Evaluation Technology, Changsha, China
| |
Collapse
|