1
|
Yang YF, Zhao E, Shi Y, Zhang H, Yang YY. Multicenter investigation of preoperative distinction between primary central nervous system lymphomas and glioblastomas through interpretable artificial intelligence models. Neuroradiology 2024; 66:1893-1906. [PMID: 39225815 DOI: 10.1007/s00234-024-03451-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE Research into the effectiveness and applicability of deep learning, radiomics, and their integrated models based on Magnetic Resonance Imaging (MRI) for preoperative differentiation between Primary Central Nervous System Lymphoma (PCNSL) and Glioblastoma (GBM), along with an exploration of the interpretability of these models. MATERIALS AND METHODS A retrospective analysis was performed on MRI images and clinical data from 261 patients across two medical centers. The data were split into a training set (n = 153, medical center 1) and an external test set (n = 108, medical center 2). Radiomic features were extracted using Pyradiomics to build the Radiomics Model. Deep learning networks, including the transformer-based MobileVIT Model and Convolutional Neural Networks (CNN) based ConvNeXt Model, were trained separately. By applying the "late fusion" theory, the radiomics model and deep learning model were fused to produce the optimal Max-Fusion Model. Additionally, Shapley Additive exPlanations (SHAP) and Grad-CAM were employed for interpretability analysis. RESULTS In the external test set, the Radiomics Model achieved an Area under the receiver operating characteristic curve (AUC) of 0.86, the MobileVIT Model had an AUC of 0.91, the ConvNeXt Model demonstrated an AUC of 0.89, and the Max-Fusion Model showed an AUC of 0.92. The Delong test revealed a significant difference in AUC between the Max-Fusion Model and the Radiomics Model (P = 0.02). CONCLUSION The Max-Fusion Model, combining different models, presents superior performance in distinguishing PCNSL and GBM, highlighting the effectiveness of model fusion for enhanced decision-making in medical applications. CLINICAL RELEVANCE STATEMENT The preoperative non-invasive differentiation between PCNSL and GBM assists clinicians in selecting appropriate treatment regimens and clinical management strategies.
Collapse
Affiliation(s)
- Yun-Feng Yang
- Laboratory for Medical Imaging Informatics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
- Laboratory for Medical Imaging Informatics, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Endong Zhao
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China
- Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China
| | - Yutong Shi
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning, China
| | - Hao Zhang
- Department of Interventional Radiology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Yuan-Yuan Yang
- Laboratory for Medical Imaging Informatics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China.
- Laboratory for Medical Imaging Informatics, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Shams A. Leveraging State-of-the-Art AI Algorithms in Personalized Oncology: From Transcriptomics to Treatment. Diagnostics (Basel) 2024; 14:2174. [PMID: 39410578 PMCID: PMC11476216 DOI: 10.3390/diagnostics14192174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Continuous breakthroughs in computational algorithms have positioned AI-based models as some of the most sophisticated technologies in the healthcare system. AI shows dynamic contributions in advancing various medical fields involving data interpretation and monitoring, imaging screening and diagnosis, and treatment response and survival prediction. Despite advances in clinical oncology, more effort must be employed to tailor therapeutic plans based on each patient's unique transcriptomic profile within the precision/personalized oncology frame. Furthermore, the standard analysis method is not compatible with the comprehensive deciphering of significant data streams, thus precluding the prediction of accurate treatment options. METHODOLOGY We proposed a novel approach that includes obtaining different tumour tissues and preparing RNA samples for comprehensive transcriptomic interpretation using specifically trained, programmed, and optimized AI-based models for extracting large data volumes, refining, and analyzing them. Next, the transcriptomic results will be scanned against an expansive drug library to predict the response of each target to the tested drugs. The obtained target-drug combination/s will be then validated using in vitro and in vivo experimental models. Finally, the best treatment combination option/s will be introduced to the patient. We also provided a comprehensive review discussing AI models' recent innovations and implementations to aid in molecular diagnosis and treatment planning. RESULTS The expected transcriptomic analysis generated by the AI-based algorithms will provide an inclusive genomic profile for each patient, containing statistical and bioinformatics analyses, identification of the dysregulated pathways, detection of the targeted genes, and recognition of molecular biomarkers. Subjecting these results to the prediction and pairing AI-based processes will result in statistical graphs presenting each target's likely response rate to various treatment options. Different in vitro and in vivo investigations will further validate the selection of the target drug/s pairs. CONCLUSIONS Leveraging AI models will provide more rigorous manipulation of large-scale datasets on specific cancer care paths. Such a strategy would shape treatment according to each patient's demand, thus fortifying the avenue of personalized/precision medicine. Undoubtedly, this will assist in improving the oncology domain and alleviate the burden of clinicians in the coming decade.
Collapse
Affiliation(s)
- Anwar Shams
- Department of Pharmacology, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; or ; Tel.: +00966-548638099
- Research Center for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University, Taif 26432, Saudi Arabia
- High Altitude Research Center, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
3
|
Müller SJ, Khadhraoui E, Henkes H, Ernst M, Rohde V, Schatlo B, Malinova V. Differentiation between multifocal CNS lymphoma and glioblastoma based on MRI criteria. Discov Oncol 2024; 15:397. [PMID: 39217585 PMCID: PMC11366735 DOI: 10.1007/s12672-024-01266-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
PURPOSE Differentiating between glioblastoma (GB) with multiple foci (mGB) and multifocal central nervous system lymphoma (mCNSL) can be challenging because these cancers share several features at first appearance on magnetic resonance imaging (MRI). The aim of this study was to explore morphological differences in MRI findings for mGB versus mCNSL and to develop an interpretation algorithm with high diagnostic accuracy. METHODS In this retrospective study, MRI characteristics were compared between 50 patients with mGB and 50 patients with mCNSL treated between 2015 and 2020. The following parameters were evaluated: size, morphology, lesion location and distribution, connections between the lesions on the fluid-attenuated inversion recovery sequence, patterns of contrast enhancement, and apparent diffusion coefficient (ADC) values within the tumor and the surrounding edema, as well as MR perfusion and susceptibility weighted imaging (SWI) whenever available. RESULTS A total of 187 mCNSL lesions and 181 mGB lesions were analyzed. The mCNSL lesions demonstrated frequently a solid morphology compared to mGB lesions, which showed more often a cystic, mixed cystic/solid morphology and a cortical infiltration. The mean measured diameter was significantly smaller for mCNSL than mGB lesions (p < 0.001). Tumor ADC ratios were significantly smaller in mCNSL than in mGB (0.89 ± 0.36 vs. 1.05 ± 0.35, p < 0.001). The ADC ratio of perilesional edema was significantly higher (p < 0.001) in mCNSL than in mGB. In SWI / T2*-weighted imaging, tumor-associated susceptibility artifacts were more often found in mCNSL than in mGB (p < 0.001). CONCLUSION The lesion size, ADC ratios of the lesions and the adjacent tissue as well as the vascularization of the lesions in the MR-perfusion were found to be significant distinctive patterns of mCNSL and mGB allowing a radiological differentiation of these two entities on initial MRI. A diagnostic algorithm based on these parameters merits a prospective validation.
Collapse
Affiliation(s)
- Sebastian Johannes Müller
- Institute of Neuroradiology, University Medical Center, Göttingen, Germany
- Clinic for Neuroradiology, Katharinen-Hospital Stuttgart, Stuttgart, Germany
| | - Eya Khadhraoui
- Institute of Neuroradiology, University Medical Center, Göttingen, Germany
- Clinic for Neuroradiology, Katharinen-Hospital Stuttgart, Stuttgart, Germany
| | - Hans Henkes
- Clinic for Neuroradiology, Katharinen-Hospital Stuttgart, Stuttgart, Germany
| | - Marielle Ernst
- Institute of Neuroradiology, University Medical Center, Göttingen, Germany
| | - Veit Rohde
- Department of Neurosurgery, University Medical Center, Georg-August-University, Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Bawarjan Schatlo
- Department of Neurosurgery, University Medical Center, Georg-August-University, Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Vesna Malinova
- Department of Neurosurgery, University Medical Center, Georg-August-University, Robert-Koch-Straße 40, 37075, Göttingen, Germany.
| |
Collapse
|
4
|
Sun K, Li M, Shi Y, He H, Li Y, Sun L, Wang H, Jin C, Chen M, Li L. Convolutional neural network for identifying common bile duct stones based on magnetic resonance cholangiopancreatography. Clin Radiol 2024; 79:553-558. [PMID: 38616474 DOI: 10.1016/j.crad.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/31/2024] [Accepted: 02/27/2024] [Indexed: 04/16/2024]
Abstract
AIMS To develop an auto-categorization system based on machine learning for three-dimensional magnetic resonance cholangiopancreatography (3D MRCP) to detect choledocholithiasis from healthy and symptomatic individuals. MATERIALS AND METHODS 3D MRCP sequences from 254 cases with common bile duct (CBD) stones and 251 cases with normal CBD were enrolled to train the 3D Convolutional Neural Network (3D-CNN) model. Then 184 patients from three different hospitals (91 with positive CBD stone and 93 with normal CBD) were prospectively included to test the performance of 3D-CNN. RESULTS With a cutoff value of 0.2754, 3D-CNN achieved the sensitivity, specificity, and accuracy of 94.51%, 92.47%, and 93.48%, respectively. In the receiver operating characteristic curve analysis, the area under the curve (AUC) for the presence or absence of CBD stones was 0.974 (95% CI, 0.940-0.992). There was no significant difference in sensitivity, specificity, and accuracy between 3D-CNN and radiologists. In addition, the performance of 3D-CNN was also evaluated in the internal test set and the external test set, respectively. The internal test set yielded an accuracy of 94.74% and AUC of 0.974 (95% CI, 0.919-0.996), and the external test set yielded an accuracy of 92.13% and AUC of 0.970 (95% CI, 0.911-0.995). CONCLUSIONS An artificial intelligence-assisted diagnostic system for CBD stones was constructed using 3D-CNN model for 3D MRCP images. The performance of 3D-CNN model was comparable to that of radiologists in diagnosing CBD stones. 3D-CNN model maintained high performance when applied to data from other hospitals.
Collapse
Affiliation(s)
- K Sun
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - M Li
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Y Shi
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - H He
- People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China.
| | - Y Li
- People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China.
| | - L Sun
- The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.
| | - H Wang
- Zhejiang Herymed Technology Co., Ltd., Hangzhou, China; Hithink Flush Information Network Co., Ltd., Hangzhou, China.
| | - C Jin
- Zhejiang Herymed Technology Co., Ltd., Hangzhou, China; Hithink Flush Information Network Co., Ltd., Hangzhou, China.
| | - M Chen
- Hithink Flush Information Network Co., Ltd., Hangzhou, China.
| | - L Li
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
5
|
Naser PV, Maurer MC, Fischer M, Karimian-Jazi K, Ben-Salah C, Bajwa AA, Jakobs M, Jungk C, Jesser J, Bendszus M, Maier-Hein K, Krieg SM, Neher P, Neumann JO. Deep learning aided preoperative diagnosis of primary central nervous system lymphoma. iScience 2024; 27:109023. [PMID: 38352223 PMCID: PMC10863328 DOI: 10.1016/j.isci.2024.109023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/21/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024] Open
Abstract
The preoperative distinction between glioblastoma (GBM) and primary central nervous system lymphoma (PCNSL) can be difficult, even for experts, but is highly relevant. We aimed to develop an easy-to-use algorithm, based on a convolutional neural network (CNN) to preoperatively discern PCNSL from GBM and systematically compare its performance to experienced neurosurgeons and radiologists. To this end, a CNN-based on DenseNet169 was trained with the magnetic resonance (MR)-imaging data of 68 PCNSL and 69 GBM patients and its performance compared to six trained experts on an external test set of 10 PCNSL and 10 GBM. Our neural network predicted PCNSL with an accuracy of 80% and a negative predictive value (NPV) of 0.8, exceeding the accuracy achieved by clinicians (73%, NPV 0.77). Combining expert rating with automated diagnosis in those cases where experts dissented yielded an accuracy of 95%. Our approach has the potential to significantly augment the preoperative radiological diagnosis of PCNSL.
Collapse
Affiliation(s)
- Paul Vincent Naser
- Heidelberg University Hospital, Department of Neurosurgery, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- Heidelberg University, Medical Faculty, Grabengasse 1, 69117 Heidelberg, Germany
- Heidelberg University Hospital, Division of Stereotactic Neurosurgery, Department of Neurosurgery, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- AI Health Innovation Cluster, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Miriam Cindy Maurer
- German Cancer Research Center (DKFZ) Heidelberg, Division of Medical Image Computing, Germany, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Department of Medical Informatics, University Medical Center Göttingen, Von-Siebold-Straße 3, 37075 Göttingen, Germany
| | - Maximilian Fischer
- Heidelberg University, Medical Faculty, Grabengasse 1, 69117 Heidelberg, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Division of Medical Image Computing, Germany, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), partner site Heidelberg, Heidelberg, Germany
| | - Kianush Karimian-Jazi
- Heidelberg University, Medical Faculty, Grabengasse 1, 69117 Heidelberg, Germany
- Heidelberg University Hospital, Department of Neuroradiology, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Chiraz Ben-Salah
- Heidelberg University, Medical Faculty, Grabengasse 1, 69117 Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
| | - Awais Akbar Bajwa
- Heidelberg University Hospital, Department of Neurosurgery, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- Heidelberg University, Medical Faculty, Grabengasse 1, 69117 Heidelberg, Germany
| | - Martin Jakobs
- Heidelberg University Hospital, Department of Neurosurgery, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- Heidelberg University, Medical Faculty, Grabengasse 1, 69117 Heidelberg, Germany
- Heidelberg University Hospital, Division of Stereotactic Neurosurgery, Department of Neurosurgery, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Christine Jungk
- Heidelberg University Hospital, Department of Neurosurgery, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- Heidelberg University, Medical Faculty, Grabengasse 1, 69117 Heidelberg, Germany
| | - Jessica Jesser
- Heidelberg University, Medical Faculty, Grabengasse 1, 69117 Heidelberg, Germany
- Heidelberg University Hospital, Department of Neuroradiology, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Martin Bendszus
- Heidelberg University, Medical Faculty, Grabengasse 1, 69117 Heidelberg, Germany
- Heidelberg University Hospital, Department of Neuroradiology, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Klaus Maier-Hein
- German Cancer Research Center (DKFZ) Heidelberg, Division of Medical Image Computing, Germany, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), partner site Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and the University Medical Center Heidelberg, 69120 Heidelberg, Germany
- Pattern Analysis and Learning Group, Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- AI Health Innovation Cluster, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sandro M. Krieg
- Heidelberg University Hospital, Department of Neurosurgery, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- Heidelberg University, Medical Faculty, Grabengasse 1, 69117 Heidelberg, Germany
| | - Peter Neher
- German Cancer Research Center (DKFZ) Heidelberg, Division of Medical Image Computing, Germany, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), partner site Heidelberg, Heidelberg, Germany
- Pattern Analysis and Learning Group, Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Jan-Oliver Neumann
- Heidelberg University Hospital, Department of Neurosurgery, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- Heidelberg University, Medical Faculty, Grabengasse 1, 69117 Heidelberg, Germany
- Heidelberg University Hospital, Division of Stereotactic Neurosurgery, Department of Neurosurgery, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| |
Collapse
|
6
|
Bai A, Si M, Xue P, Qu Y, Jiang Y. Artificial intelligence performance in detecting lymphoma from medical imaging: a systematic review and meta-analysis. BMC Med Inform Decis Mak 2024; 24:13. [PMID: 38191361 PMCID: PMC10775443 DOI: 10.1186/s12911-023-02397-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 12/07/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Accurate diagnosis and early treatment are essential in the fight against lymphatic cancer. The application of artificial intelligence (AI) in the field of medical imaging shows great potential, but the diagnostic accuracy of lymphoma is unclear. This study was done to systematically review and meta-analyse researches concerning the diagnostic performance of AI in detecting lymphoma using medical imaging for the first time. METHODS Searches were conducted in Medline, Embase, IEEE and Cochrane up to December 2023. Data extraction and assessment of the included study quality were independently conducted by two investigators. Studies that reported the diagnostic performance of an AI model/s for the early detection of lymphoma using medical imaging were included in the systemic review. We extracted the binary diagnostic accuracy data to obtain the outcomes of interest: sensitivity (SE), specificity (SP), and Area Under the Curve (AUC). The study was registered with the PROSPERO, CRD42022383386. RESULTS Thirty studies were included in the systematic review, sixteen of which were meta-analyzed with a pooled sensitivity of 87% (95%CI 83-91%), specificity of 94% (92-96%), and AUC of 97% (95-98%). Satisfactory diagnostic performance was observed in subgroup analyses based on algorithms types (machine learning versus deep learning, and whether transfer learning was applied), sample size (≤ 200 or > 200), clinicians versus AI models and geographical distribution of institutions (Asia versus non-Asia). CONCLUSIONS Even if possible overestimation and further studies with a better standards for application of AI algorithms in lymphoma detection are needed, we suggest the AI may be useful in lymphoma diagnosis.
Collapse
Affiliation(s)
- Anying Bai
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mingyu Si
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peng Xue
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yimin Qu
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Jiang
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- School of Health Policy and Management, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
7
|
Alhalabi OT, Sahm F, Unterberg AW, Jakobs M. The molecular diagnostic yield of frame-based stereotactic biopsies in the age of precision neuro-oncology: a cross-sectional study. Acta Neurochir (Wien) 2023; 165:2479-2487. [PMID: 37553446 PMCID: PMC10477138 DOI: 10.1007/s00701-023-05742-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/23/2023] [Indexed: 08/10/2023]
Abstract
PURPOSE With the increasing role of molecular genetics in the diagnostics of intracranial tumors, delivering sufficient representative tissue for such analyses is of paramount importance. This study explored the rate of successful diagnosis after frame-based stereotactic biopsies of intracranial lesions. METHODS Consecutive patients undergoing frame-based stereotactic biopsies in 2020 and 2021 were included in this retrospective analysis. Cases were classified into three groups: conclusive, diagnosis with missing molecular genetics (MG) data, and inconclusive neuropathological diagnosis. RESULTS Of 145 patients, a conclusive diagnosis was possible in n = 137 cases (94.5%). For 3 cases (2.0%), diagnosis was established with missing MG data. In 5 cases (3.5%), an inconclusive (tumor) diagnosis was met. Diagnoses comprised mainly WHO 4 glioblastomas (n = 73, 56%), CNS lymphomas (n = 23, 16%), inflammatory diseases (n = 14, 10%), and metastases (n = 5, 3%). Methylomics were applied in 49% (n = 44) of tumor cases (panel sequencing in n = 28, 30% of tumors). The average number of specimens used for MG diagnostics was 5, while the average number of specimens provided was 15. In a univariate analysis, insufficient DNA was associated with an inconclusive diagnosis or a diagnosis with missing MG data (p < 0.001). Analyses of planned and implemented trajectories of cases with diagnosis with missing MG data or inconclusive diagnosis (n = 8) revealed that regions of interest were reached in almost all cases (n = 7). CONCLUSION Although stereotactic frame-based biopsies deliver a limited amount of tissue, they bear high histopathological and molecular genetic diagnostic yields. Given the proven surgical precision of the planned biopsy trajectories, optimizing surveyed lesion regions could help improve the rate of conclusive diagnoses.
Collapse
Affiliation(s)
- Obada T Alhalabi
- Department of Neurosurgery, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69121, Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas W Unterberg
- Department of Neurosurgery, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69121, Heidelberg, Germany
| | - Martin Jakobs
- Department of Neurosurgery, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69121, Heidelberg, Germany.
- Division of Stereotactic Neurosurgery, Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
8
|
Tangsrivimol JA, Schonfeld E, Zhang M, Veeravagu A, Smith TR, Härtl R, Lawton MT, El-Sherbini AH, Prevedello DM, Glicksberg BS, Krittanawong C. Artificial Intelligence in Neurosurgery: A State-of-the-Art Review from Past to Future. Diagnostics (Basel) 2023; 13:2429. [PMID: 37510174 PMCID: PMC10378231 DOI: 10.3390/diagnostics13142429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
In recent years, there has been a significant surge in discussions surrounding artificial intelligence (AI), along with a corresponding increase in its practical applications in various facets of everyday life, including the medical industry. Notably, even in the highly specialized realm of neurosurgery, AI has been utilized for differential diagnosis, pre-operative evaluation, and improving surgical precision. Many of these applications have begun to mitigate risks of intraoperative and postoperative complications and post-operative care. This article aims to present an overview of the principal published papers on the significant themes of tumor, spine, epilepsy, and vascular issues, wherein AI has been applied to assess its potential applications within neurosurgery. The method involved identifying high-cited seminal papers using PubMed and Google Scholar, conducting a comprehensive review of various study types, and summarizing machine learning applications to enhance understanding among clinicians for future utilization. Recent studies demonstrate that machine learning (ML) holds significant potential in neuro-oncological care, spine surgery, epilepsy management, and other neurosurgical applications. ML techniques have proven effective in tumor identification, surgical outcomes prediction, seizure outcome prediction, aneurysm prediction, and more, highlighting its broad impact and potential in improving patient management and outcomes in neurosurgery. This review will encompass the current state of research, as well as predictions for the future of AI within neurosurgery.
Collapse
Affiliation(s)
- Jonathan A Tangsrivimol
- Division of Neurosurgery, Department of Surgery, Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok 10210, Thailand
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center and Jame Cancer Institute, Columbus, OH 43210, USA
| | - Ethan Schonfeld
- Department Biomedical Informatics, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Michael Zhang
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Anand Veeravagu
- Stanford Neurosurgical Artificial Intelligence and Machine Learning Laboratory, Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Timothy R Smith
- Department of Neurosurgery, Computational Neuroscience Outcomes Center (CNOC), Mass General Brigham, Harvard Medical School, Boston, MA 02115, USA
| | - Roger Härtl
- Weill Cornell Medicine Brain and Spine Center, New York, NY 10022, USA
| | - Michael T Lawton
- Department of Neurosurgery, Barrow Neurological Institute (BNI), Phoenix, AZ 85013, USA
| | - Adham H El-Sherbini
- Faculty of Health Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Daniel M Prevedello
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center and Jame Cancer Institute, Columbus, OH 43210, USA
| | - Benjamin S Glicksberg
- Hasso Plattner Institute for Digital Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chayakrit Krittanawong
- Cardiology Division, New York University Langone Health, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
9
|
Chirica C, Haba D, Cojocaru E, Mazga AI, Eva L, Dobrovat BI, Chirica SI, Stirban I, Rotundu A, Leon MM. One Step Forward-The Current Role of Artificial Intelligence in Glioblastoma Imaging. Life (Basel) 2023; 13:1561. [PMID: 37511936 PMCID: PMC10381280 DOI: 10.3390/life13071561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Artificial intelligence (AI) is rapidly integrating into diagnostic methods across many branches of medicine. Significant progress has been made in tumor assessment using AI algorithms, and research is underway on how image manipulation can provide information with diagnostic, prognostic and treatment impacts. Glioblastoma (GB) remains the most common primary malignant brain tumor, with a median survival of 15 months. This paper presents literature data on GB imaging and the contribution of AI to the characterization and tracking of GB, as well as recurrence. Furthermore, from an imaging point of view, the differential diagnosis of these tumors can be problematic. How can an AI algorithm help with differential diagnosis? The integration of clinical, radiomics and molecular markers via AI holds great potential as a tool for enhancing patient outcomes by distinguishing brain tumors from mimicking lesions, classifying and grading tumors, and evaluating them before and after treatment. Additionally, AI can aid in differentiating between tumor recurrence and post-treatment alterations, which can be challenging with conventional imaging methods. Overall, the integration of AI into GB imaging has the potential to significantly improve patient outcomes by enabling more accurate diagnosis, precise treatment planning and better monitoring of treatment response.
Collapse
Affiliation(s)
- Costin Chirica
- Doctoral School, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Str., 700115 Iasi, Romania
| | - Danisia Haba
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Str., 700115 Iasi, Romania
| | - Elena Cojocaru
- Department of Morphofunctional Sciences I, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Andreea Isabela Mazga
- Faculty of General Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Lucian Eva
- Department of Anatomy, Apollonia University, 11 Pacurari Str., 700535 Iasi, Romania
| | - Bogdan Ionut Dobrovat
- Department of Radiology, Emergency Hospital Professor Doctor Nicolae Oblu, 700309 Iasi, Romania
| | - Sabina Ioana Chirica
- Faculty of General Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ioana Stirban
- Department of Neurosurgery, Emergency Hospital Professor Doctor Nicolae Oblu, 700309 Iasi, Romania
| | - Andreea Rotundu
- Doctoral School, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Str., 700115 Iasi, Romania
| | - Maria Magdalena Leon
- Doctoral School, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Str., 700115 Iasi, Romania
| |
Collapse
|
10
|
Jaruenpunyasak J, Duangsoithong R, Tunthanathip T. Deep learning for image classification between primary central nervous system lymphoma and glioblastoma in corpus callosal tumors. J Neurosci Rural Pract 2023; 14:470-476. [PMID: 37692824 PMCID: PMC10483185 DOI: 10.25259/jnrp_50_2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/23/2023] [Indexed: 09/12/2023] Open
Abstract
Objectives It can be challenging in some situations to distinguish primary central nervous system lymphoma (PCNSL) from glioblastoma (GBM) based on magnetic resonance imaging (MRI) scans, especially those involving the corpus callosum. The objective of this study was to assess the diagnostic performance of deep learning (DL) models between PCNSLs and GBMs in corpus callosal tumors. Materials and Methods The axial T1-weighted gadolinium-enhanced MRI scans of 274 individuals with pathologically confirmed PCNSL (n = 94) and GBM (n = 180) were examined. After image pooling, pre-operative MRI scans were randomly split with an 80/20 procedure into a training dataset (n = 709) and a testing dataset (n = 177) for DL model development. Therefore, the DL model was deployed as a web application and validated with the unseen images (n = 114) and area under the receiver operating characteristic curve (AUC); other outcomes were calculated to assess the discrimination performance. Results The first baseline DL model had an AUC of 0.77 for PCNSL when evaluated with unseen images. The 2nd model with ridge regression regularization and the 3rd model with drop-out regularization increased an AUC of 0.83 and 0.84. In addition, the last model with data augmentation yielded an AUC of 0.57. Conclusion DL with regularization may provide useful diagnostic information to help doctors distinguish PCNSL from GBM.
Collapse
Affiliation(s)
- Jermphiphut Jaruenpunyasak
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University Songkhla, Songkhla, Thailand
| | - Rakkrit Duangsoithong
- Department of Electrical Engineering, Faculty of Engineering, Prince of Songkla University, Songkhla, Thailand
| | - Thara Tunthanathip
- Department of Surgery, Division of Neurosurgery, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
11
|
Frosina G. Recapitulating the Key Advances in the Diagnosis and Prognosis of High-Grade Gliomas: Second Half of 2021 Update. Int J Mol Sci 2023; 24:ijms24076375. [PMID: 37047356 PMCID: PMC10094646 DOI: 10.3390/ijms24076375] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/02/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
High-grade gliomas (World Health Organization grades III and IV) are the most frequent and fatal brain tumors, with median overall survivals of 24–72 and 14–16 months, respectively. We reviewed the progress in the diagnosis and prognosis of high-grade gliomas published in the second half of 2021. A literature search was performed in PubMed using the general terms “radio* and gliom*” and a time limit from 1 July 2021 to 31 December 2021. Important advances were provided in both imaging and non-imaging diagnoses of these hard-to-treat cancers. Our prognostic capacity also increased during the second half of 2021. This review article demonstrates slow, but steady improvements, both scientifically and technically, which express an increased chance that patients with high-grade gliomas may be correctly diagnosed without invasive procedures. The prognosis of those patients strictly depends on the final results of that complex diagnostic process, with widely varying survival rates.
Collapse
|
12
|
Kotsyfakis S, Iliaki-Giannakoudaki E, Anagnostopoulos A, Papadokostaki E, Giannakoudakis K, Goumenakis M, Kotsyfakis M. The application of machine learning to imaging in hematological oncology: A scoping review. Front Oncol 2022; 12:1080988. [PMID: 36605438 PMCID: PMC9808781 DOI: 10.3389/fonc.2022.1080988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Background Here, we conducted a scoping review to (i) establish which machine learning (ML) methods have been applied to hematological malignancy imaging; (ii) establish how ML is being applied to hematological cancer radiology; and (iii) identify addressable research gaps. Methods The review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis Extension for Scoping Reviews guidelines. The inclusion criteria were (i) pediatric and adult patients with suspected or confirmed hematological malignancy undergoing imaging (population); (ii) any study using ML techniques to derive models using radiological images to apply to the clinical management of these patients (concept); and (iii) original research articles conducted in any setting globally (context). Quality Assessment of Diagnostic Accuracy Studies 2 criteria were used to assess diagnostic and segmentation studies, while the Newcastle-Ottawa scale was used to assess the quality of observational studies. Results Of 53 eligible studies, 33 applied diverse ML techniques to diagnose hematological malignancies or to differentiate them from other diseases, especially discriminating gliomas from primary central nervous system lymphomas (n=18); 11 applied ML to segmentation tasks, while 9 applied ML to prognostication or predicting therapeutic responses, especially for diffuse large B-cell lymphoma. All studies reported discrimination statistics, but no study calculated calibration statistics. Every diagnostic/segmentation study had a high risk of bias due to their case-control design; many studies failed to provide adequate details of the reference standard; and only a few studies used independent validation. Conclusion To deliver validated ML-based models to radiologists managing hematological malignancies, future studies should (i) adhere to standardized, high-quality reporting guidelines such as the Checklist for Artificial Intelligence in Medical Imaging; (ii) validate models in independent cohorts; (ii) standardize volume segmentation methods for segmentation tasks; (iv) establish comprehensive prospective studies that include different tumor grades, comparisons with radiologists, optimal imaging modalities, sequences, and planes; (v) include side-by-side comparisons of different methods; and (vi) include low- and middle-income countries in multicentric studies to enhance generalizability and reduce inequity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Michail Kotsyfakis
- Biology Center of the Czech Academy of Sciences, Budweis (Ceske Budejovice), Czechia
| |
Collapse
|
13
|
Cao L, Zhang M, Zhang Y, Ji B, Wang X, Wang X. Progress of radiological‑pathological workflows in the differential diagnosis between primary central nervous system lymphoma and high‑grade glioma (Review). Oncol Rep 2022; 49:20. [PMID: 36484403 PMCID: PMC9773014 DOI: 10.3892/or.2022.8457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/03/2022] [Indexed: 12/13/2022] Open
Abstract
Primary central nervous system lymphoma (PCNSL) and high‑grade glioma (HGG) are distinct entities of the CNS with completely distinct treatments. The treatment of PCNSL is chemotherapy‑based, while surgery is the first choice for HGG. However, the clinical features of the two entities often overlap, and a clear pathological diagnosis is important for subsequent management, especially for the management of PCNSL. Stereotactic biopsy is recognized as one of the minimally invasive alternatives for evaluating the involvement of the CNS. However, in the case of limited tissue materials, the differential diagnosis between the two entities is still difficult. In addition, some patients are too ill to tolerate a needle biopsy. Therefore, combining imaging, histopathology and laboratory examinations is essential in order to make a clear diagnosis as soon as possible. The present study reviews the progress of comparative research on both imaging and laboratory tests based on the pathophysiological changes of the two entities, and proposes an integrative and optimized diagnostic process, with the purpose of building a better understanding for neurologists, hematologists, radiologists and pathologists.
Collapse
Affiliation(s)
- Luming Cao
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Mengchao Zhang
- Department of Radiology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Ying Zhang
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Bin Ji
- Department of Nuclear Medicine, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Xuemei Wang
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Xueju Wang
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China,Correspondence to: Dr Xueju Wang, Department of Pathology, China-Japan Union Hospital, Jilin University, 126 Xiantai Street, Changchun, Jilin 130033, P.R. China, E-mail:
| |
Collapse
|
14
|
Hsia T, Yekula A, Batool SM, Rosenfeld YB, You DG, Weissleder R, Lee H, Carter BS, Balaj L. Glioblastoma-derived extracellular vesicle subpopulations following 5-aminolevulinic acid treatment bear diagnostic implications. J Extracell Vesicles 2022; 11:e12278. [PMID: 36404434 PMCID: PMC9676504 DOI: 10.1002/jev2.12278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/13/2022] [Accepted: 10/17/2022] [Indexed: 11/22/2022] Open
Abstract
Liquid biopsy is a minimally invasive alternative to surgical biopsy, encompassing different analytes including extracellular vesicles (EVs), circulating tumour cells (CTCs), circulating tumour DNA (ctDNA), proteins, and metabolites. EVs are released by virtually all cells, but at a higher rate by faster cycling, malignant cells. They encapsulate cargo native to the originating cell and can thus provide a window into the tumour landscape. EVs are often analysed in bulk which hinders the analysis of rare, tumour-specific EV subpopulations from the large host EV background. Here, we fractionated EV subpopulations in vitro and in vivo and characterized their phenotype and generic cargo. We used 5-aminolevulinic acid (5-ALA) to induce release of endogenously fluorescent tumour-specific EVs (EVPpIX ). Analysis of five different subpopulations (EVPpIX , EVCD63 , EVCD9 , EVEGFR , EVCFDA ) from glioblastoma (GBM) cell lines revealed unique transcriptome profiles, with the EVPpIX transcriptome demonstrating closer alignment to tumorigenic processes over the other subpopulations. Similarly, isolation of tumour-specific EVs from GBM patient plasma showed enrichment in GBM-associated genes, when compared to bulk EVs from plasma. We propose that fractionation of EV populations facilitates detection and isolation of tumour-specific EVs for disease monitoring.
Collapse
Affiliation(s)
- Tiffaney Hsia
- Department of NeurosurgeryMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Anudeep Yekula
- Department of NeurosurgeryMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - S. Maheen Batool
- Department of NeurosurgeryMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Yulia B. Rosenfeld
- Department of NeurosurgeryMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Dong Gil You
- Department of NeurosurgeryMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Center for Systems BiologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Ralph Weissleder
- Center for Systems BiologyMassachusetts General HospitalBostonMassachusettsUSA
- Department of RadiologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Hakho Lee
- Center for Systems BiologyMassachusetts General HospitalBostonMassachusettsUSA
- Department of RadiologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Bob S. Carter
- Department of NeurosurgeryMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Leonora Balaj
- Department of NeurosurgeryMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
15
|
Dong J, Zhang Y, Meng Y, Yang T, Ma W, Wu H. Segmentation Algorithm of Magnetic Resonance Imaging Glioma under Fully Convolutional Densely Connected Convolutional Networks. Stem Cells Int 2022; 2022:8619690. [PMID: 36299467 PMCID: PMC9592238 DOI: 10.1155/2022/8619690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/22/2022] [Accepted: 09/26/2022] [Indexed: 11/18/2022] Open
Abstract
This work focused on the application value of magnetic resonance imaging (MRI) image segmentation algorithm based on fully convolutional DenseNet neural network (FCDNN) in glioma diagnosis. In this work, based on the fully convolutional DenseNet algorithm, a new MRI image automatic semantic segmentation method cerebral gliomas semantic segmentation network (CGSSNet) was established and was applied to glioma MRI image segmentation by using the BraTS public dataset as research data. Under the same conditions, compare the differences of dice similarity coefficient (DSC), sensitivity, and Hausdroff distance (HD) between this algorithm and other algorithms in MRI image processing. The results showed that the CGSSNet network segmentation algorithm significantly improved the segmentation accuracy of glioma MRI images. In addition, its DSC, sensitivity, and HD values for glioma MRI images were 0.937, 0.811, and 1.201, respectively. Under different iteration times, the DSC, sensitivity, and HD values of the CGSSNet network segmentation algorithm are significantly better than other algorithms. It showed that the CGSSNet model based on the DenseNet can improve the segmentation accuracy of glioma MRI images, and has potential application value in clinical practice.
Collapse
Affiliation(s)
- Jie Dong
- School of Information Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
| | - Yueying Zhang
- School of Information Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
| | - Yun Meng
- Department of Magnetic Resonance, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Tingxiao Yang
- School of Information Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
| | - Wei Ma
- School of Information Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
| | - Huixin Wu
- School of Information Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
| |
Collapse
|
16
|
Pires J, Costa SA, da Silva KP, da Conceição AGB, Reis ÉDM, Sinhorin AP, Branco CLB, Cruz L, Ferrarini SR, Andrade CMB. Artemether-loaded polymeric lipid-core nanocapsules reduce cell viability and alter the antioxidant status of U-87 MG cells. Pharm Dev Technol 2022; 27:892-903. [PMID: 36168940 DOI: 10.1080/10837450.2022.2128819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Glioblastomas are tumors that present a high mortality rate. Artemether (ART) is a lactone with antitumor properties, demonstrating low bioavailability and water solubility. In the present study, we developed lipid-core nanocapsules (LNC) containing pequi oil (Caryocar brasiliense Cambess) as the oily core for ART-loaded LNCs (LNCART) and evaluated their effect on human glioblastoma cells (U-87 MG). LNCs were developed by interfacial deposition of a preformed polymer, followed by physicochemical characterization. LNCART revealed a diameter of 0.216 µm, polydispersity index of 0.161, zeta potential of -12.0 mV, and a pH of 5.53. Furthermore, mitochondrial viability, proliferation, total antioxidant status, and antioxidant enzyme activity were evaluated. ART reduced cell viability after 24 h and proliferation after 48 h of treatment at concentrations equal to or above 40 µg . mL-1. LNCART, at 1.25 µg . mL-1, reduced these parameters after 24 h of treatment. Furthermore, superoxide dismutase (SOD) activity was elevated, while glutathione reductase (GR) activity was reduced. These findings suggest that ART loaded into LNC may be a promising alternative to improve its pharmacological action and possible application as a therapeutic agent for glioblastoma.
Collapse
Affiliation(s)
- Jader Pires
- Post-Graduation Program in Health Sciences, Faculty of Medical Sciences, Federal University of Mato Grosso, Cuiabá, Brazil
| | - Suéllen Alves Costa
- Post-Graduation Program in Health Sciences, Federal University of Mato Grosso, Sinop, Brazil
| | - Karoline Paiva da Silva
- Post-Graduation Program in Health Sciences, Federal University of Mato Grosso, Sinop, Brazil
| | | | - Érica de Melo Reis
- Post-Graduation Program in Health Sciences, Faculty of Medical Sciences, Federal University of Mato Grosso, Cuiabá, Brazil
| | - Adilson Paulo Sinhorin
- Institute of Natural, Human and Social Sciences, Federal University of Mato Grosso, Sinop, Brazil
| | - Carmen Lucia Bassi Branco
- Post-Graduation Program in Health Sciences, Faculty of Medical Sciences, Federal University of Mato Grosso, Cuiabá, Brazil
| | - Letícia Cruz
- Department of Industrial Pharmacy, Federal University of Santa Maria, Santa Maria, Brazil
| | - Stela Regina Ferrarini
- Post-Graduation Program in Health Sciences, Federal University of Mato Grosso, Sinop, Brazil
| | - Cláudia Marlise Balbinotti Andrade
- Post-Graduation Program in Health Sciences, Faculty of Medical Sciences, Federal University of Mato Grosso, Cuiabá, Brazil.,Department of Chemistry, Institute of Exact and Earth Sciences, Federal University of Mato Grosso, Cuiabá, Brazil
| |
Collapse
|
17
|
Guha A, Goda JS, Dasgupta A, Mahajan A, Halder S, Gawde J, Talole S. Classifying primary central nervous system lymphoma from glioblastoma using deep learning and radiomics based machine learning approach - a systematic review and meta-analysis. Front Oncol 2022; 12:884173. [PMID: 36263203 PMCID: PMC9574102 DOI: 10.3389/fonc.2022.884173] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 09/07/2022] [Indexed: 01/06/2023] Open
Abstract
BackgroundGlioblastoma (GBM) and primary central nervous system lymphoma (PCNSL) are common in elderly yet difficult to differentiate on MRI. Their management and prognosis are quite different. Recent surge of interest in predictive analytics, using machine learning (ML) from radiomic features and deep learning (DL) for diagnosing, predicting response and prognosticating disease has evinced interest among radiologists and clinicians. The objective of this systematic review and meta-analysis was to evaluate the deep learning & ML algorithms in classifying PCNSL from GBM.MethodsThe authors performed a systematic review of the literature from MEDLINE, EMBASE and the Cochrane central trials register for the search strategy in accordance with PRISMA guidelines to select and evaluate studies that included themes of ML, DL, AI, GBM, PCNSL. All studies reporting on ML algorithms or DL that for differentiating PCNSL from GBM on MR imaging were included. These studies were further narrowed down to focus on works published between 2018 and 2021. Two researchers independently conducted the literature screening, database extraction and risk bias assessment. The extracted data was synthesised and analysed by forest plots. Outcomes assessed were test characteristics such as accuracy, sensitivity, specificity and balanced accuracy.ResultsTen articles meeting the eligibility criteria were identified addressing use of ML and DL in training and validation classifiers to distinguish PCNSL from GBM on MR imaging. The total sample size was 1311 in the included studies. ML approach was used in 6 studies while DL in 4 studies. The lowest reported sensitivity was 80%, while the highest reported sensitivity was 99% in studies in which ML and DL was directly compared with the gold standard histopathology. The lowest reported specificity was 87% while the highest reported specificity was 100%. The highest reported balanced accuracy was 100% and the lowest was 84%.ConclusionsExtensive search of the database revealed a limited number of studies that have applied ML or DL to differentiate PCNSL from GBM. Of the currently published studies, Both DL & ML algorithms have demonstrated encouraging results and certainly have the potential to aid neurooncologists in taking preoperative decisions in the future leading to not only reduction in morbidities but also be cost effective.
Collapse
Affiliation(s)
- Amrita Guha
- Department of Radio Diagnosis, Tata Memorial Centre, Homi Bhaba National Institute, Mumbai, India
- *Correspondence: Amrita Guha, ; Jayant S. Goda,
| | - Jayant S. Goda
- Department of Radio Diagnosis, Tata Memorial Centre, Homi Bhaba National Institute, Mumbai, India
- *Correspondence: Amrita Guha, ; Jayant S. Goda,
| | - Archya Dasgupta
- Department of Radiation Oncology, Tata Memorial Centre, Homi Bhaba National Institute, Mumbai, India
| | - Abhishek Mahajan
- Department of Radio Diagnosis, Tata Memorial Centre, Homi Bhaba National Institute, Mumbai, India
| | - Soutik Halder
- Department of Biostatistics, Tata Memorial Centre, Homi Bhaba National Institute, Mumbai, India
| | - Jeetendra Gawde
- Department of Biostatistics, Tata Memorial Centre, Homi Bhaba National Institute, Mumbai, India
| | - Sanjay Talole
- Department of Biostatistics, Tata Memorial Centre, Homi Bhaba National Institute, Mumbai, India
| |
Collapse
|
18
|
Zhu M, Li S, Kuang Y, Hill VB, Heimberger AB, Zhai L, Zhai S. Artificial intelligence in the radiomic analysis of glioblastomas: A review, taxonomy, and perspective. Front Oncol 2022; 12:924245. [PMID: 35982952 PMCID: PMC9379255 DOI: 10.3389/fonc.2022.924245] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022] Open
Abstract
Radiological imaging techniques, including magnetic resonance imaging (MRI) and positron emission tomography (PET), are the standard-of-care non-invasive diagnostic approaches widely applied in neuro-oncology. Unfortunately, accurate interpretation of radiological imaging data is constantly challenged by the indistinguishable radiological image features shared by different pathological changes associated with tumor progression and/or various therapeutic interventions. In recent years, machine learning (ML)-based artificial intelligence (AI) technology has been widely applied in medical image processing and bioinformatics due to its advantages in implicit image feature extraction and integrative data analysis. Despite its recent rapid development, ML technology still faces many hurdles for its broader applications in neuro-oncological radiomic analysis, such as lack of large accessible standardized real patient radiomic brain tumor data of all kinds and reliable predictions on tumor response upon various treatments. Therefore, understanding ML-based AI technologies is critically important to help us address the skyrocketing demands of neuro-oncology clinical deployments. Here, we provide an overview on the latest advancements in ML techniques for brain tumor radiomic analysis, emphasizing proprietary and public dataset preparation and state-of-the-art ML models for brain tumor diagnosis, classifications (e.g., primary and secondary tumors), discriminations between treatment effects (pseudoprogression, radiation necrosis) and true progression, survival prediction, inflammation, and identification of brain tumor biomarkers. We also compare the key features of ML models in the realm of neuroradiology with ML models employed in other medical imaging fields and discuss open research challenges and directions for future work in this nascent precision medicine area.
Collapse
Affiliation(s)
- Ming Zhu
- Department of Electrical and Computer Engineering, University of Nevada Las Vegas, Las Vegas, NV, United States
| | - Sijia Li
- Kirk Kerkorian School of Medicine, University of Nevada Las Vegas, Las Vegas, NV, United States
| | - Yu Kuang
- Medical Physics Program, Department of Health Physics, University of Nevada Las Vegas, Las Vegas, NV, United States
| | - Virginia B. Hill
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Amy B. Heimberger
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Lijie Zhai
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- *Correspondence: Lijie Zhai, ; Shengjie Zhai,
| | - Shengjie Zhai
- Department of Electrical and Computer Engineering, University of Nevada Las Vegas, Las Vegas, NV, United States
- *Correspondence: Lijie Zhai, ; Shengjie Zhai,
| |
Collapse
|
19
|
Xie Y, Zaccagna F, Rundo L, Testa C, Agati R, Lodi R, Manners DN, Tonon C. Convolutional Neural Network Techniques for Brain Tumor Classification (from 2015 to 2022): Review, Challenges, and Future Perspectives. Diagnostics (Basel) 2022; 12:diagnostics12081850. [PMID: 36010200 PMCID: PMC9406354 DOI: 10.3390/diagnostics12081850] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/20/2022] [Accepted: 07/28/2022] [Indexed: 12/21/2022] Open
Abstract
Convolutional neural networks (CNNs) constitute a widely used deep learning approach that has frequently been applied to the problem of brain tumor diagnosis. Such techniques still face some critical challenges in moving towards clinic application. The main objective of this work is to present a comprehensive review of studies using CNN architectures to classify brain tumors using MR images with the aim of identifying useful strategies for and possible impediments in the development of this technology. Relevant articles were identified using a predefined, systematic procedure. For each article, data were extracted regarding training data, target problems, the network architecture, validation methods, and the reported quantitative performance criteria. The clinical relevance of the studies was then evaluated to identify limitations by considering the merits of convolutional neural networks and the remaining challenges that need to be solved to promote the clinical application and development of CNN algorithms. Finally, possible directions for future research are discussed for researchers in the biomedical and machine learning communities. A total of 83 studies were identified and reviewed. They differed in terms of the precise classification problem targeted and the strategies used to construct and train the chosen CNN. Consequently, the reported performance varied widely, with accuracies of 91.63–100% in differentiating meningiomas, gliomas, and pituitary tumors (26 articles) and of 60.0–99.46% in distinguishing low-grade from high-grade gliomas (13 articles). The review provides a survey of the state of the art in CNN-based deep learning methods for brain tumor classification. Many networks demonstrated good performance, and it is not evident that any specific methodological choice greatly outperforms the alternatives, especially given the inconsistencies in the reporting of validation methods, performance metrics, and training data encountered. Few studies have focused on clinical usability.
Collapse
Affiliation(s)
- Yuting Xie
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (Y.X.); (F.Z.); (R.L.); (C.T.)
| | - Fulvio Zaccagna
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (Y.X.); (F.Z.); (R.L.); (C.T.)
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, 40139 Bologna, Italy;
| | - Leonardo Rundo
- Department of Information and Electrical Engineering and Applied Mathematics, University of Salerno, 84084 Fisciano, Italy;
| | - Claudia Testa
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, 40139 Bologna, Italy;
- Department of Physics and Astronomy, University of Bologna, 40127 Bologna, Italy
| | - Raffaele Agati
- Programma Neuroradiologia con Tecniche ad elevata complessità, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, 40139 Bologna, Italy;
| | - Raffaele Lodi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (Y.X.); (F.Z.); (R.L.); (C.T.)
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, 40139 Bologna, Italy
| | - David Neil Manners
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (Y.X.); (F.Z.); (R.L.); (C.T.)
- Correspondence:
| | - Caterina Tonon
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (Y.X.); (F.Z.); (R.L.); (C.T.)
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, 40139 Bologna, Italy;
| |
Collapse
|
20
|
Go H. Digital Pathology and Artificial Intelligence Applications in Pathology. Brain Tumor Res Treat 2022; 10:76-82. [PMID: 35545826 PMCID: PMC9098984 DOI: 10.14791/btrt.2021.0032] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/17/2022] [Accepted: 03/13/2022] [Indexed: 11/20/2022] Open
Abstract
Digital pathology is revolutionizing pathology. The introduction of digital pathology made it possible to comprehensively change the pathology diagnosis workflow, apply and develop pathological artificial intelligence (AI) models, generate pathological big data, and perform telepathology. AI algorithms, including machine learning and deep learning, are used for the detection, segmentation, registration, processing, and classification of digitized pathological images. Pathological AI algorithms can be helpfully utilized for diagnostic screening, morphometric analysis of biomarkers, the discovery of new meanings of prognosis and therapeutic response in pathological images, and improvement of diagnostic efficiency. In order to develop a successful pathological AI model, it is necessary to consider the selection of a suitable type of image for a subject, utilization of big data repositories, the setting of an effective annotation strategy, image standardization, and color normalization. This review will elaborate on the advantages and perspectives of digital pathology, AI-based approaches, the applications in pathology, and considerations and challenges in the development of pathological AI models.
Collapse
Affiliation(s)
- Heounjeong Go
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
21
|
Doyen S, Dadario NB. 12 Plagues of AI in Healthcare: A Practical Guide to Current Issues With Using Machine Learning in a Medical Context. Front Digit Health 2022; 4:765406. [PMID: 35592460 PMCID: PMC9110785 DOI: 10.3389/fdgth.2022.765406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 04/11/2022] [Indexed: 12/23/2022] Open
Abstract
The healthcare field has long been promised a number of exciting and powerful applications of Artificial Intelligence (AI) to improve the quality and delivery of health care services. AI techniques, such as machine learning (ML), have proven the ability to model enormous amounts of complex data and biological phenomena in ways only imaginable with human abilities alone. As such, medical professionals, data scientists, and Big Tech companies alike have all invested substantial time, effort, and funding into these technologies with hopes that AI systems will provide rigorous and systematic interpretations of large amounts of data that can be leveraged to augment clinical judgments in real time. However, despite not being newly introduced, AI-based medical devices have more than often been limited in their true clinical impact that was originally promised or that which is likely capable, such as during the current COVID-19 pandemic. There are several common pitfalls for these technologies that if not prospectively managed or adjusted in real-time, will continue to hinder their performance in high stakes environments outside of the lab in which they were created. To address these concerns, we outline and discuss many of the problems that future developers will likely face that contribute to these failures. Specifically, we examine the field under four lenses: approach, data, method and operation. If we continue to prospectively address and manage these concerns with reliable solutions and appropriate system processes in place, then we as a field may further optimize the clinical applicability and adoption of medical based AI technology moving forward.
Collapse
Affiliation(s)
- Stephane Doyen
- Omniscient Neurotechnology, Sydney, NSW, Australia
- *Correspondence: Stephane Doyen
| | - Nicholas B. Dadario
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, NJ, United States
| |
Collapse
|
22
|
Tariciotti L, Caccavella VM, Fiore G, Schisano L, Carrabba G, Borsa S, Giordano M, Palmisciano P, Remoli G, Remore LG, Pluderi M, Caroli M, Conte G, Triulzi F, Locatelli M, Bertani G. A Deep Learning Model for Preoperative Differentiation of Glioblastoma, Brain Metastasis and Primary Central Nervous System Lymphoma: A Pilot Study. Front Oncol 2022; 12:816638. [PMID: 35280801 PMCID: PMC8907851 DOI: 10.3389/fonc.2022.816638] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/31/2022] [Indexed: 12/22/2022] Open
Abstract
Background Neuroimaging differentiation of glioblastoma, primary central nervous system lymphoma (PCNSL) and solitary brain metastasis (BM) remains challenging in specific cases showing similar appearances or atypical features. Overall, advanced MRI protocols have high diagnostic reliability, but their limited worldwide availability, coupled with the overlapping of specific neuroimaging features among tumor subgroups, represent significant drawbacks and entail disparities in the planning and management of these oncological patients. Objective To evaluate the classification performance metrics of a deep learning algorithm trained on T1-weighted gadolinium-enhanced (T1Gd) MRI scans of glioblastomas, atypical PCNSLs and BMs. Materials and Methods We enrolled 121 patients (glioblastoma: n=47; PCNSL: n=37; BM: n=37) who had undergone preoperative T1Gd-MRI and histopathological confirmation. Each lesion was segmented, and all ROIs were exported in a DICOM dataset. The patient cohort was then split in a training and hold-out test sets following a 70/30 ratio. A Resnet101 model, a deep neural network (DNN), was trained on the training set and validated on the hold-out test set to differentiate glioblastomas, PCNSLs and BMs on T1Gd-MRI scans. Results The DNN achieved optimal classification performance in distinguishing PCNSLs (AUC: 0.98; 95%CI: 0.95 - 1.00) and glioblastomas (AUC: 0.90; 95%CI: 0.81 - 0.97) and moderate ability in differentiating BMs (AUC: 0.81; 95%CI: 0.70 - 0.95). This performance may allow clinicians to correctly identify patients eligible for lesion biopsy or surgical resection. Conclusion We trained and internally validated a deep learning model able to reliably differentiate ambiguous cases of PCNSLs, glioblastoma and BMs by means of T1Gd-MRI. The proposed predictive model may provide a low-cost, easily-accessible and high-speed decision-making support for eligibility to diagnostic brain biopsy or maximal tumor resection in atypical cases.
Collapse
Affiliation(s)
- Leonardo Tariciotti
- Unit of Neurosurgery, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Valerio M. Caccavella
- Department of Paediatric Orthopaedics and Traumatology, ASST Centro Specialistico Ortopedico Traumatologico Gaetano Pini-CTO, Milan, Italy
| | - Giorgio Fiore
- Unit of Neurosurgery, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Luigi Schisano
- Unit of Neurosurgery, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Giorgio Carrabba
- Unit of Neurosurgery, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefano Borsa
- Unit of Neurosurgery, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Martina Giordano
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Paolo Palmisciano
- Department of Neurosurgery, Trauma Center, Gamma Knife Center, Cannizzaro Hospital, Catania, Italy
| | - Giulia Remoli
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, Rome, Italy
| | - Luigi Gianmaria Remore
- Unit of Neurosurgery, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Mauro Pluderi
- Unit of Neurosurgery, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Manuela Caroli
- Unit of Neurosurgery, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giorgio Conte
- Unit of Neuroradiology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Fabio Triulzi
- Unit of Neuroradiology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Marco Locatelli
- Unit of Neurosurgery, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Aldo Ravelli” Research Center for Neurotechnology and Experimental Brain Therapeutics, University of Milan, Milan, Italy
| | - Giulio Bertani
- Unit of Neurosurgery, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|