1
|
Hirsch F, Bumanglag Â, Zhang Y, Wohlschlaeger A. Diverging functional connectivity timescales: Capturing distinct aspects of cognitive performance in early psychosis. Neuroimage Clin 2024; 43:103657. [PMID: 39208481 PMCID: PMC11401179 DOI: 10.1016/j.nicl.2024.103657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/05/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Psychosis spectrum disorders (PSDs) are marked by cognitive impairments, the neurobiological correlates of which remain poorly understood. Here, we investigate the entropy of time-varying functional connectivity (TVFC) patterns from resting-state functional magnetic resonance imaging (rs-fMRI) as potential biomarker for cognitive performance in PSDs. By combining our results with multimodal reference data, we hope to generate new insights into the mechanisms underlying cognitive dysfunction in PSDs. We hypothesized that low-entropy TVFC patterns (LEN) would be more behaviorally informative than high-entropy TVFC patterns (HEN), especially for tasks that require extensive integration across diverse cognitive subdomains. METHODS rs-fMRI and behavioral data from 97 patients in the early phases of psychosis and 53 controls were analyzed. Positron emission tomography (PET) and magnetoencephalography (MEG) data were taken from a public repository (Hansen et al., 2022). Multivariate analyses were conducted to examine relationships between TVFC patterns at multiple spatial scales and cognitive performance in patients. RESULTS Compared to HEN, LEN explained significantly more cognitive variance on average in PSD patients, driven by superior encoding of information on psychometrically more integrated tasks. HEN better captured information in specific subdomains of executive functioning. Nodal HEN-LEN transitions were spatially aligned with neurobiological gradients reflecting monoaminergic transporter densities and MEG beta-power. Exploratory analyses revealed a close statistical relationship between LEN and positive symptom severity in patients. CONCLUSION Our entropy-based analysis of TVFC patterns dissociates distinct aspects of cognition in PSDs. By linking topographies of neurotransmission and oscillatory dynamics with cognitive performance, it enhances our understanding of the mechanisms underlying cognitive deficits in PSDs.
Collapse
Affiliation(s)
- Fabian Hirsch
- Department of Diagnostic and Interventional Neuroradiology, Klinikum R.d.Isar, Technical University Munich, Ismaninger Str. 22, Munich 81675, Germany.
| | - Ângelo Bumanglag
- Department of Diagnostic and Interventional Neuroradiology, Klinikum R.d.Isar, Technical University Munich, Ismaninger Str. 22, Munich 81675, Germany
| | - Yifei Zhang
- Department of Diagnostic and Interventional Neuroradiology, Klinikum R.d.Isar, Technical University Munich, Ismaninger Str. 22, Munich 81675, Germany
| | - Afra Wohlschlaeger
- Department of Diagnostic and Interventional Neuroradiology, Klinikum R.d.Isar, Technical University Munich, Ismaninger Str. 22, Munich 81675, Germany
| |
Collapse
|
2
|
Bardella G, Giuffrida V, Giarrocco F, Brunamonti E, Pani P, Ferraina S. Response inhibition in premotor cortex corresponds to a complex reshuffle of the mesoscopic information network. Netw Neurosci 2024; 8:597-622. [PMID: 38952814 PMCID: PMC11168728 DOI: 10.1162/netn_a_00365] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/18/2024] [Indexed: 07/03/2024] Open
Abstract
Recent studies have explored functional and effective neural networks in animal models; however, the dynamics of information propagation among functional modules under cognitive control remain largely unknown. Here, we addressed the issue using transfer entropy and graph theory methods on mesoscopic neural activities recorded in the dorsal premotor cortex of rhesus monkeys. We focused our study on the decision time of a Stop-signal task, looking for patterns in the network configuration that could influence motor plan maturation when the Stop signal is provided. When comparing trials with successful inhibition to those with generated movement, the nodes of the network resulted organized into four clusters, hierarchically arranged, and distinctly involved in information transfer. Interestingly, the hierarchies and the strength of information transmission between clusters varied throughout the task, distinguishing between generated movements and canceled ones and corresponding to measurable levels of network complexity. Our results suggest a putative mechanism for motor inhibition in premotor cortex: a topological reshuffle of the information exchanged among ensembles of neurons.
Collapse
Affiliation(s)
- Giampiero Bardella
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Valentina Giuffrida
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Franco Giarrocco
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Emiliano Brunamonti
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Pierpaolo Pani
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Stefano Ferraina
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
3
|
Irastorza-Valera L, Soria-Gómez E, Benitez JM, Montáns FJ, Saucedo-Mora L. Review of the Brain's Behaviour after Injury and Disease for Its Application in an Agent-Based Model (ABM). Biomimetics (Basel) 2024; 9:362. [PMID: 38921242 PMCID: PMC11202129 DOI: 10.3390/biomimetics9060362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
The brain is the most complex organ in the human body and, as such, its study entails great challenges (methodological, theoretical, etc.). Nonetheless, there is a remarkable amount of studies about the consequences of pathological conditions on its development and functioning. This bibliographic review aims to cover mostly findings related to changes in the physical distribution of neurons and their connections-the connectome-both structural and functional, as well as their modelling approaches. It does not intend to offer an extensive description of all conditions affecting the brain; rather, it presents the most common ones. Thus, here, we highlight the need for accurate brain modelling that can subsequently be used to understand brain function and be applied to diagnose, track, and simulate treatments for the most prevalent pathologies affecting the brain.
Collapse
Affiliation(s)
- Luis Irastorza-Valera
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
- PIMM Laboratory, ENSAM–Arts et Métiers ParisTech, 151 Bd de l’Hôpital, 75013 Paris, France
| | - Edgar Soria-Gómez
- Achúcarro Basque Center for Neuroscience, Barrio Sarriena, s/n, 48940 Leioa, Spain;
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi, 5, 48009 Bilbao, Spain
- Department of Neurosciences, University of the Basque Country UPV/EHU, Barrio Sarriena, s/n, 48940 Leioa, Spain
| | - José María Benitez
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
| | - Francisco J. Montáns
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Luis Saucedo-Mora
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts Ave, Cambridge, MA 02139, USA
| |
Collapse
|
4
|
Hirsch F, Bumanglag Â, Zhang Y, Wohlschlaeger A. Diverging functional connectivity timescales: Capturing distinct aspects of cognitive performance in early psychosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.07.24306932. [PMID: 38766002 PMCID: PMC11100938 DOI: 10.1101/2024.05.07.24306932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Background Psychosis spectrum disorders (PSDs) are marked by cognitive impairments, the neurobiological correlates of which remain poorly understood. Here, we investigate the entropy of time-varying functional connectivity (TVFC) patterns from resting-state fMRI (rfMRI) as potential biomarker for cognitive performance in PSDs. By combining our results with multimodal reference data, we hope to generate new insights into the mechanisms underlying cognitive dysfunction in PSDs. We hypothesized that low-entropy TVFC patterns (LEN) would be more behaviorally informative than high-entropy TVFC patterns (HEN), especially for tasks that require extensive integration across diverse cognitive subdomains. Methods rfMRI and behavioral data from 97 patients in the early phases of psychosis and 53 controls were analyzed. Positron-Emission Tomography (PET) and magnetoencephalography (MEG) data were taken from a public repository (Hansen et al., 2022). Multivariate analyses were conducted to examine relationships between TVFC patterns at multiple spatial scales and cognitive performance in patients. Results Compared to HEN, LEN explained significantly more cognitive variance on average in PSD patients, driven by superior encoding of information on psychometrically more integrated tasks. HEN better captured information in specific subdomains of executive functioning. Nodal HEN-LEN transitions were spatially aligned with neurobiological gradients reflecting monoaminergic transporter densities and MEG beta power. Exploratory analyses revealed a close statistical relationship between LEN and positive PSD symptoms. Conclusion Our entropy-based analysis of TVFC patterns dissociates distinct aspects of cognition in PSDs. By linking topographies of neurotransmission and oscillatory dynamics with cognitive performance, it enhances our understanding of the mechanisms underlying cognitive deficits in PSDs. CRediT Authorship Contribution Statement Fabian Hirsch: Conceptualization, Methodology, Software, Formal analysis, Writing - Original Draft, Writing - Review & Editing, Visualization; Ângelo Bumanglag: Methodology, Software, Formal analysis, Writing - Review & Editing; Yifei Zhang: Methodology, Software, Formal analysis, Writing - Review & Editing; Afra Wohlschlaeger: Methodology, Writing - Review & Editing, Supervision, Project administration.
Collapse
|
5
|
Chan YLE, Tsai SJ, Chern Y, Yang AC. Exploring the role of hub and network dysfunction in brain connectomes of schizophrenia using functional magnetic resonance imaging. Front Psychiatry 2024; 14:1305359. [PMID: 38260783 PMCID: PMC10800602 DOI: 10.3389/fpsyt.2023.1305359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction Pathophysiological etiology of schizophrenia remains unclear due to the heterogeneous nature of its biological and clinical manifestations. Dysfunctional communication among large-scale brain networks and hub nodes have been reported. In this study, an exploratory approach was adopted to evaluate the dysfunctional connectome of brain in schizophrenia. Methods Two hundred adult individuals with schizophrenia and 200 healthy controls were recruited from Taipei Veterans General Hospital. All subjects received functional magnetic resonance imaging (fMRI) scanning. Functional connectivity (FC) between parcellated brain regions were obtained. Pair-wise brain regions with significantly different functional connectivity among the two groups were identified and further analyzed for their concurrent ratio of connectomic differences with another solitary brain region (single-FC dysfunction) or dynamically interconnected brain network (network-FC dysfunction). Results The right thalamus had the highest number of significantly different pair-wise functional connectivity between schizophrenia and control groups, followed by the left thalamus and the right middle frontal gyrus. For individual brain regions, dysfunctional single-FCs and network-FCs could be found concurrently. Dysfunctional single-FCs distributed extensively in the whole brain of schizophrenia patients, but overlapped in similar groups of brain nodes. A dysfunctional module could be formed, with thalamus being the key dysfunctional hub. Discussion The thalamus can be a critical hub in the brain that its dysfunctional connectome with other brain regions is significant in schizophrenia patients. Interconnections between dysfunctional FCs for individual brain regions may provide future guide to identify critical brain pathology associated with schizophrenia.
Collapse
Affiliation(s)
- Yee-Lam E. Chan
- Doctoral Degree Program of Translational Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
- Department of Psychiatry, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yijuang Chern
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Albert C. Yang
- Institute of Brain Science/Digital Medicine Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
6
|
Abujamea AH, Almosa M, Uzair M, Alabdullatif N, Bashir S. Reduced Cortical Complexity in Children with Developmental Delay in Saudi Arabia. Cureus 2023; 15:e48291. [PMID: 38058330 PMCID: PMC10696479 DOI: 10.7759/cureus.48291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2023] [Indexed: 12/08/2023] Open
Abstract
INTRODUCTION Developmental delay (DD) is a neurodevelopmental disorder characterized by delays in multiple domains. The investigation of brain structure in DD has been enhanced by advanced neuroimaging techniques that can identify regional surface deformities. Neuroimaging studies have identified structural brain abnormalities in individuals with DD, but research specific to the Saudi Arabian population is limited. In this study, we examine the neuroanatomical abnormalities in the cortical and subcortical regions of Saudi Arabian children with DD. METHOD A T1-weighted, 1-mm-thick MRI was used to acquire structural brain images of 29 children with DD and age-matched healthy controls. RESULTS Analysis of the MRI data revealed significant differences in several cortical and subcortical structures of gray matter (GM) and white matter (WM) in several brain regions of the DD group. Specifically, significant deformities were observed in the caudate nucleus, globus pallidus, frontal gyrus, pars opercularis, pars orbitalis, cingulate gyrus, and subcallosal gyrus. These findings suggest disrupted neurodevelopment in these regions, which may contribute to the cognitive, motor, and behavioral impairments commonly observed in individuals with DD. CONCLUSIONS The present study provides valuable insights into the neuroanatomical differences in Saudi Arabian children with DD. Our results provide evidence for cortical and subcortical abnormalities in DD. Deformities in the observed regions may contribute to cognitive impairment, emotional dysregulation, mood disorders, and language deficits commonly observed in DD. The structural analysis may enable the identification of neuroanatomical biomarkers to facilitate the early diagnosis or progression of DD. These results suggest that lower cortical complexity in DD children due to alterations in networks may play a critical role in early brain development.
Collapse
Affiliation(s)
- Abdullah H Abujamea
- Department of Radiology and Medical Imaging, King Saud University Medical City, King Saud University, Riyadh, SAU
| | - Mohammed Almosa
- Department of Radiology and Medical Imaging, King Saud University Medical City, King Saud University, Riyadh 12372, Saudi Arabia, Riyadh, SAU
| | - Mohammad Uzair
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University, Islamabad, PAK
| | | | - Shahid Bashir
- Department of Neuroscience, Neuroscience Center, King Fahad Specialist Hospital, Dammam, SAU
| |
Collapse
|
7
|
Odkhuu S, Kim WS, Tsogt U, Shen J, Cheraghi S, Li L, Rami FZ, Le TH, Lee KH, Kang NI, Kim SW, Chung YC. Network biomarkers in recovered psychosis patients who discontinued antipsychotics. Mol Psychiatry 2023; 28:3717-3726. [PMID: 37773447 PMCID: PMC10730417 DOI: 10.1038/s41380-023-02279-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 10/01/2023]
Abstract
There are no studies investigating topological properties of resting-state fMRI (rs-fMRI) in patients who have recovered from psychosis and discontinued medication (hereafter, recovered patients [RP]). This study aimed to explore topological organization of the functional brain connectome in the RP using graph theory approach. We recruited 30 RP and 50 age and sex-matched healthy controls (HC). The RP were further divided into the subjects who were relapsed after discontinuation of antipsychotics (RP-R) and who maintained recovered state without relapse (RP-M). Using graph-based network analysis of rs-fMRI signals, global and local metrics and hub information were obtained. The robustness of the network was tested with random failure and targeted attack. As an ancillary analysis, Network-Based Statistic (NBS) was performed. Association of significant findings with psychopathology and cognitive functioning was also explored. The RP showed intact network properties in terms of global and local metrics. However, higher global functional connectivity strength and hyperconnectivity in the interconnected component were observed in the RP compared to HC. In the subgroup analysis, the RP-R were found to have lower global efficiency, longer characteristic path length and lower robustness whereas no such abnormalities were identified in the RP-M. Associations of the degree centrality of some hubs with cognitive functioning were identified in the RP-M. Even though network properties of the RP were intact, subgroup analysis revealed more altered topological organizations in the RP-R. The findings in the RP-R and RP-M may serve as network biomarkers for predicting relapse or maintained recovery after the discontinuation of antipsychotics.
Collapse
Affiliation(s)
- Soyolsaikhan Odkhuu
- Department of Psychiatry, Jeonbuk National University, Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Woo-Sung Kim
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
- Department of Psychiatry, Jeonbuk National University Hospital, Jeonju, Korea
| | - Uyanga Tsogt
- Department of Psychiatry, Jeonbuk National University, Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Jie Shen
- Department of Psychiatry, Jeonbuk National University, Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Sahar Cheraghi
- Department of Psychiatry, Jeonbuk National University, Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Ling Li
- Department of Psychiatry, Jeonbuk National University, Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Fatima Zahra Rami
- Department of Psychiatry, Jeonbuk National University, Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Thi-Hung Le
- Department of Psychiatry, Jeonbuk National University, Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Keon-Hak Lee
- Department of Psychiatry, Maeumsarang Hospital, Wanju, Korea
| | - Nam-In Kang
- Department of Psychiatry, Maeumsarang Hospital, Wanju, Korea
| | - Sung-Wan Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
| | - Young-Chul Chung
- Department of Psychiatry, Jeonbuk National University, Medical School, Jeonju, Korea.
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea.
- Department of Psychiatry, Jeonbuk National University Hospital, Jeonju, Korea.
| |
Collapse
|
8
|
Ibáñez-Berganza M, Lucibello C, Santucci F, Gili T, Gabrielli A. Noise cleaning the precision matrix of short time series. Phys Rev E 2023; 108:024313. [PMID: 37723818 DOI: 10.1103/physreve.108.024313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/02/2023] [Indexed: 09/20/2023]
Abstract
We present a comparison between various algorithms of inference of covariance and precision matrices in small data sets of real vectors of the typical length and dimension of human brain activity time series retrieved by functional magnetic resonance imaging (fMRI). Assuming a Gaussian model underlying the neural activity, the problem consists of denoising the empirically observed matrices to obtain a better estimator of the (unknown) true precision and covariance matrices. We consider several standard noise-cleaning algorithms and compare them on two types of data sets. The first type consists of synthetic time series sampled from a generative Gaussian model of which we can vary the fraction of dimensions per sample q and the strength of off-diagonal correlations. The second type consists of time series of fMRI brain activity of human subjects at rest. The reliability of each algorithm is assessed in terms of test-set likelihood and, in the case of synthetic data, of the distance from the true precision matrix. We observe that the so-called optimal rotationally invariant estimator, based on random matrix theory, leads to a significantly lower distance from the true precision matrix in synthetic data and higher test likelihood in natural fMRI data. We propose a variant of the optimal rotationally invariant estimator in which one of its parameters is optimzed by cross-validation. In the severe undersampling regime (large q) typical of fMRI series, it outperforms all the other estimators. We furthermore propose a simple algorithm based on an iterative likelihood gradient ascent, leading to very accurate estimations in weakly correlated synthetic data sets.
Collapse
Affiliation(s)
- Miguel Ibáñez-Berganza
- Networks Unit, IMT School for Advanced Studies Lucca, Piazza San Francesco 19, 50100 Lucca, Italy and Istituto Italiano di Tecnologia. Largo Barsanti e Matteucci, 53, 80125 Napoli, Italy
| | - Carlo Lucibello
- AI Lab, Institute for Data Science and Analytics, Bocconi University, 20136 Milano, Italy
| | - Francesca Santucci
- Networks Unit, IMT School for Advanced Studies Lucca, Piazza San Francesco 19, 50100 Lucca, Italy
| | - Tommaso Gili
- Networks Unit, IMT School for Advanced Studies Lucca, Piazza San Francesco 19, 50100 Lucca, Italy
| | - Andrea Gabrielli
- Dipartimento di Ingegneria Civile, Informatica e delle Tecnologie Aeronautiche, Universitá degli Studi Roma Tre, Via Vito Volterra 62, 00146 Rome, Italy and Centro Ricerche Enrico Fermi, Via Panisperna 89a, 00184 Rome, Italy
| |
Collapse
|
9
|
Tranfa M, Iasevoli F, Cocozza S, Ciccarelli M, Barone A, Brunetti A, de Bartolomeis A, Pontillo G. Neural substrates of verbal memory impairment in schizophrenia: A multimodal connectomics study. Hum Brain Mapp 2023; 44:2829-2840. [PMID: 36852587 PMCID: PMC10089087 DOI: 10.1002/hbm.26248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/20/2022] [Accepted: 02/13/2023] [Indexed: 03/01/2023] Open
Abstract
While verbal memory is among the most compromised cognitive domains in schizophrenia (SZ), its neural substrates remain elusive. Here, we explored the structural and functional brain network correlates of verbal memory impairment in SZ. We acquired diffusion and resting-state functional MRI data of 49 SZ patients, classified as having preserved (VMP, n = 22) or impaired (VMI, n = 26) verbal memory based on the List Learning task, and 55 healthy controls (HC). Structural and functional connectivity matrices were obtained and analyzed to assess associations with disease status (SZ vs. HC) and verbal memory impairment (VMI vs. VMP) using two complementary data-driven approaches: threshold-free network-based statistics (TFNBS) and hybrid connectivity independent component analysis (connICA). TFNBS showed altered connectivity in SZ patients compared with HC (p < .05, FWER-corrected), with distributed structural changes and functional reorganization centered around sensorimotor areas. Specifically, functional connectivity was reduced within the visual and somatomotor networks and increased between visual areas and associative and subcortical regions. Only a tiny cluster of increased functional connectivity between visual and bilateral parietal attention-related areas correlated with verbal memory dysfunction. Hybrid connICA identified four robust traits, representing fundamental patterns of joint structural-functional connectivity. One of these, mainly capturing the functional connectivity profile of the visual network, was significantly associated with SZ (HC vs. SZ: Cohen's d = .828, p < .0001) and verbal memory impairment (VMP vs. VMI: Cohen's d = -.805, p = .01). We suggest that aberrant connectivity of sensorimotor networks may be a key connectomic signature of SZ and a putative biomarker of SZ-related verbal memory impairment, in consistency with bottom-up models of cognitive disruption.
Collapse
Affiliation(s)
- Mario Tranfa
- Department of Advanced Biomedical SciencesUniversity “Federico II”NaplesItaly
| | - Felice Iasevoli
- Section of Psychiatry ‐ Unit of Treatment Resistant Psychosis ‐ Laboratory of Molecular and Translational Psychiatry ‐ Department of Neuroscience, Reproductive and Odontostomatological SciencesUniversity “Federico II”NaplesItaly
| | - Sirio Cocozza
- Department of Advanced Biomedical SciencesUniversity “Federico II”NaplesItaly
| | - Mariateresa Ciccarelli
- Section of Psychiatry ‐ Unit of Treatment Resistant Psychosis ‐ Laboratory of Molecular and Translational Psychiatry ‐ Department of Neuroscience, Reproductive and Odontostomatological SciencesUniversity “Federico II”NaplesItaly
| | - Annarita Barone
- Section of Psychiatry ‐ Unit of Treatment Resistant Psychosis ‐ Laboratory of Molecular and Translational Psychiatry ‐ Department of Neuroscience, Reproductive and Odontostomatological SciencesUniversity “Federico II”NaplesItaly
| | - Arturo Brunetti
- Department of Advanced Biomedical SciencesUniversity “Federico II”NaplesItaly
| | - Andrea de Bartolomeis
- Section of Psychiatry ‐ Unit of Treatment Resistant Psychosis ‐ Laboratory of Molecular and Translational Psychiatry ‐ Department of Neuroscience, Reproductive and Odontostomatological SciencesUniversity “Federico II”NaplesItaly
- Staff of UNESCO Chair on Health Education and Sustainable DevelopmentUniversity “Federico II”NaplesItaly
| | - Giuseppe Pontillo
- Department of Advanced Biomedical SciencesUniversity “Federico II”NaplesItaly
- Department of Electrical Engineering and Information Technology (DIETI)University “Federico II”NaplesItaly
| |
Collapse
|
10
|
Korda AI, Andreou C, Avram M, Handels H, Martinetz T, Borgwardt S. Chaos analysis of the brain topology in first-episode psychosis and clinical high risk patients. Front Psychiatry 2022; 13:965128. [PMID: 36311536 PMCID: PMC9606602 DOI: 10.3389/fpsyt.2022.965128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Structural MRI studies in first-episode psychosis (FEP) and in clinical high risk (CHR) patients have consistently shown volumetric abnormalities in frontal, temporal, and cingulate cortex areas. The aim of the present study was to employ chaos analysis for the identification of brain topology differences in people with psychosis. Structural MRI were acquired from 77 FEP, 73 CHR and 44 healthy controls (HC). Chaos analysis of the gray matter distribution was performed: First, the distances of each voxel from the center of mass in the gray matter image was calculated. Next, the distances multiplied by the voxel intensity were represented as a spatial-series, which then was analyzed by extracting the Largest-Lyapunov-Exponent (lambda). The lambda brain map depicts thus how the gray matter topology changes. Between-group differences were identified by (a) comparing the lambda brain maps, which resulted in statistically significant differences in FEP and CHR compared to HC; and (b) matching the lambda series with the Morlet wavelet, which resulted in statistically significant differences in the scalograms of FEP against CHR and HC. The proposed framework using spatial-series extraction enhances the between-group differences of FEP, CHR and HC subjects, verifies diagnosis-relevant features and may potentially contribute to the identification of structural biomarkers for psychosis.
Collapse
Affiliation(s)
- Alexandra I. Korda
- Translational Psychiatry, Department of Psychiatry and Psycotherapy, University of Lübeck, Lübeck, Germany
| | - Christina Andreou
- Translational Psychiatry, Department of Psychiatry and Psycotherapy, University of Lübeck, Lübeck, Germany
| | - Mihai Avram
- Translational Psychiatry, Department of Psychiatry and Psycotherapy, University of Lübeck, Lübeck, Germany
| | - Heinz Handels
- Institute of Medical Informatics, University of Lübeck, Lübeck, Germany
| | - Thomas Martinetz
- Institute for Neuro- and Bioinformatics, University of Lübeck, Lübeck, Germany
| | - Stefan Borgwardt
- Translational Psychiatry, Department of Psychiatry and Psycotherapy, University of Lübeck, Lübeck, Germany
| |
Collapse
|