Bovo S, Utzeri VJ, Ribani A, Taurisano V, Schiavo G, Fontanesi L. A genotyping by sequencing approach can disclose Apis mellifera population genomic information contained in honey environmental DNA.
Sci Rep 2022;
12:19541. [PMID:
36379985 PMCID:
PMC9666642 DOI:
10.1038/s41598-022-24101-z]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Awareness has been raised over the last years on the genetic integrity of autochthonous honey bee subspecies. Genomic tools available in Apis mellifera can make it possible to measure this information by targeting individual honey bee DNA. Honey contains DNA traces from all organisms that contributed or were involved in its production steps, including the honey bees of the colony. In this study, we designed and tested a genotyping by sequencing (GBS) assay to analyse single nucleotide polymorphisms (SNPs) of A. mellifera nuclear genome using environmental DNA extracted from honey. A total of 121 SNPs (97 SNPs informative for honey bee subspecies identification and 24 SNPs associated with relevant traits of the colonies) were used in the assay to genotype honey DNA, which derives from thousands of honey bees. Results were integrated with information derived from previous studies and whole genome resequencing datasets. This GBS method is highly reliable in estimating honey bee SNP allele frequencies of the whole colony from which the honey derived. This assay can be used to identify the honey bee subspecies of the colony that produced the honey and, in turn, to authenticate the entomological origin of the honey.
Collapse