1
|
Chukanov NV, Aksenov SM. Structural Features, Chemical Diversity, and Physical Properties of Microporous Sodalite-Type Materials: A Review. Int J Mol Sci 2024; 25:10218. [PMID: 39337703 PMCID: PMC11432373 DOI: 10.3390/ijms251810218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/15/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
This review contains data on a wide class of microporous materials with frameworks belonging to the sodalite topological type. Various methods for the synthesis of these materials, their structural and crystal chemical features, as well as physical and chemical properties are discussed. Specific properties of sodalite-related materials make it possible to consider they as thermally stable ionic conductors, catalysts and catalyst carriers, sorbents, ion exchangers for water purification, matrices for the immobilization of radionuclides and heavy metals, hydrogen and methane storage, and stabilization of chromophores and phosphors. It has been shown that the diversity of properties of sodalite-type materials is associated with the chemical diversity of their frameworks and extra-framework components, as well as with the high elasticity of the framework.
Collapse
Affiliation(s)
- Nikita V. Chukanov
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia
- Faculty of Geology, Moscow State University, Moscow 119991, Russia
| | - Sergey M. Aksenov
- Laboratory of Arctic Mineralogy and Material Sciences, Federal Research Center Kola Science Centre, Russian Academy of Sciences, Apatity 184209, Russia
- Geological Institute, Federal Research Center Kola Science Centre, Russian Academy of Sciences, Apatity 184209, Russia
- Institute of the Earth’s Crust, Siberian Branch, Russian Academy of Sciences, Irkutsk 664033, Russia
| |
Collapse
|
2
|
Wang Y, Jin Y, Yang F, Zhang J, Zhang C, Kuang F, Ju M, Li S, Cheng S. Prediction of potential high-temperature superconductivity in ternary Y-Hf-H compounds under high pressure. Sci Rep 2024; 14:17670. [PMID: 39085479 PMCID: PMC11291659 DOI: 10.1038/s41598-024-68697-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024] Open
Abstract
Compressed ternary alloy superhydrides are currently considered to be the most promising competitors for high-temperature superconducting materials. Here, the stable stoichiometries in the Y-Hf-H ternary system under pressure are comprehensively explored in theory and four fresh phases are predicted: Pmna-YHfH6 and P4/mmm-YHfH7 at 200 GPa, P4/mmm-YHfH8 at 300 GPa and P-6m2-YHfH18 at 400 GPa. The four Y-Hf-H ternary phases are thermodynamically and dynamically stable at corresponding pressure. In addition, structural features, bonding characteristics, electronic properties, and superconductivity of the four ternary Y-Hf-H phases are systematically calculated and discussed. As the hydrogen content and the density of states of H atoms at the Fermi level increase, the superconducting transition temperatures (Tc) of Y-Hf-H system are significantly enhanced. The P-6m2-YHfH18 with high hydrogen content exhibits a high calculated Tc value of 130 K at 400 GPa.
Collapse
Affiliation(s)
- Yanqi Wang
- Department of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, 434023, China
| | - Yuanyuan Jin
- Department of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, 434023, China
| | - Fulong Yang
- Department of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, 434023, China
| | - Jinquan Zhang
- Department of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, 434023, China
| | - Chuanzhao Zhang
- Department of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, 434023, China.
| | - Fangguang Kuang
- School of Physics and Electronic Information, Gannan Normal University, Ganzhou, 341000, China.
| | - Meng Ju
- School of Physical Science and Technology, Southwest University, Chongqing, 400715, China
| | - Song Li
- Department of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, 434023, China
| | - Shubo Cheng
- Department of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, 434023, China
| |
Collapse
|
3
|
Luo YX, Gao J, Liu QJ, Fan DH, Liu ZT. Structural and electronic properties of clathrate-like hydride: MH 6 and MH 9 (M = Sc, Y, La). J Mol Model 2024; 30:229. [PMID: 38918212 DOI: 10.1007/s00894-024-06034-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
CONTEXT The addition of central metal atoms to hydrogen clathrate structures is thought to provide a certain amount of "internal chemical pressure" to offset some of the external physical pressure required for compound stability. The size and valence of the central atoms significantly affect the minimum pressure required for the stabilization of hydrogen-rich compounds and their superconducting transition temperature. In recent years, many studies have calculated the minimum stable pressure and superconducting transition temperature of compounds with H24, H29, and H32 hydrogen clathrates, with centrally occupied metal atoms. In order to investigate the stability and physical properties of compounds with H cages in which the central atoms change in the same third group B, herein, based on first-principles calculations, we systematically investigated the lattice parameters, crystal volume, band structures, density of states, Mulliken analysis, charge density, charge density difference, and electronic localization function in I m 3 ¯ m -MH6 and P63/mmc-MH9 systems with different centered rare earth atoms M (M = Sc, Y, La) under a series of pressures. We find that for MH9, the pressure mainly changes the crystal lattice parameters along the c-axis, and the contributions of the different H atoms in MH9 to the Fermi level are H3 > H1 > H2. The density of states at the Fermi level of MH6 is mainly provided by H 1 s. Moreover, the size of the central atom M is particularly important for the stability of the crystal. By observing a series of properties of the structures with H24 and H29 cages wrapping the same family of central atoms under a series of pressures, our theoretical study is helpful for further understanding the formation mechanism of high-temperature superconductors and provides a reference for future research and design of high-temperature superconductors. METHODS The first principles based on the density functional theory and density functional perturbation theory were employed to execute all calculations by using the CASTEP code in this work.
Collapse
Affiliation(s)
- Ying-Xi Luo
- Bond and Band Engineering Group, School of Physical Science and Technology, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - Juan Gao
- Bond and Band Engineering Group, School of Physical Science and Technology, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China.
| | - Qi-Jun Liu
- Bond and Band Engineering Group, School of Physical Science and Technology, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - Dai-He Fan
- Bond and Band Engineering Group, School of Physical Science and Technology, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - Zheng-Tang Liu
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| |
Collapse
|
4
|
Liu P, Wang C, Zhang D, Wang X, Duan D, Liu Z, Cui T. Strategies for improving the superconductivity of hydrides under high pressure. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:353001. [PMID: 38754446 DOI: 10.1088/1361-648x/ad4ccc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/16/2024] [Indexed: 05/18/2024]
Abstract
The successful prediction and confirmation of unprecedentedly high-temperature superconductivity in compressed hydrogen-rich hydrides signify a remarkable advancement in the continuous quest for attaining room-temperature superconductivity. The recent studies have established a broad scope for developing binary and ternary hydrides and illustrated correlation between specific hydrogen motifs and high-Tcs under high pressures. The analysis of the microscopic mechanism of superconductivity in hydrides suggests that the high electronic density of states at the Fermi level (EF), the large phonon energy scale of the vibration modes and the resulting enhanced electron-phonon coupling are crucial contributors towards the high-Tcphonon-mediated superconductors. The aim of our efforts is to tackle forthcoming challenges associated with elevating theTcand reducing the stabilization pressures of hydrogen-based superconductors, and offer insights for the future discoveries of room-temperature superconductors. Our present Review offers an overview and analysis of the latest advancements in predicting and experimentally synthesizing various crystal structures, while also exploring strategies to enhance the superconductivity and reducing their stabilization pressures of hydrogen-rich hydrides.
Collapse
Affiliation(s)
- Pengye Liu
- Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, People's Republic of China
| | - Chang Wang
- Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, People's Republic of China
| | - Daoyuan Zhang
- Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, People's Republic of China
| | - Xiang Wang
- Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, People's Republic of China
| | - Defang Duan
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, People's Republic of China
| | - Zhao Liu
- Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, People's Republic of China
| | - Tian Cui
- Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, People's Republic of China
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
5
|
Knorpp AJ, Zawisza A, Huangfu S, Borzì A, Clark AH, Kata D, Graule T, Stuer M. Hydrothermal synthesis of multi-cationic high-entropy layered double hydroxides. RSC Adv 2022; 12:26362-26371. [PMID: 36275118 PMCID: PMC9475562 DOI: 10.1039/d2ra05435c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022] Open
Abstract
High-entropy materials are compositionally complex materials which often contain five or more elements. The most commonly studied materials in this field are alloys and oxides, where their composition allows for tunable materials properties. High-entropy layered double hydroxides have been recently touted as the next focus for the field of high-entropy materials to expand into. However, most previous work on multi-cationic layered double hydroxides has focused on syntheses with 5 or less cations in the structure. To bridge this gap into high-entropy materials, this work explores the range and extent of different compositional combinations for high-entropy double layered hydroxides. Specifically, pure layered double hydroxides were synthesized with different combinations of 7 cations (Mg, Co, Cu, Zn, Ni, Al, Fe, Cr) as well as one combination of 8 cations by utilizing a hydrothermal synthesis method. Furthermore, magnetic properties of the 8-cation LDH were investigated.
Collapse
Affiliation(s)
- Amy J Knorpp
- Laboratory for High Performance Ceramics, Empa. Swiss Federal Laboratories for Materials Science and Technology Überlandstrasse 129 CH-8600 Dübendorf Switzerland
| | - Anna Zawisza
- Laboratory for High Performance Ceramics, Empa. Swiss Federal Laboratories for Materials Science and Technology Überlandstrasse 129 CH-8600 Dübendorf Switzerland
- Department of Ceramics and Refractories, Faculty of Materials Science and Ceramics, AGH University of Science and Technology al. Mickiewicza 30-059 Krakow Poland
| | - Shangxiong Huangfu
- Laboratory for High Performance Ceramics, Empa. Swiss Federal Laboratories for Materials Science and Technology Überlandstrasse 129 CH-8600 Dübendorf Switzerland
| | - Aurelio Borzì
- Center for X-ray Analytics, Swiss Federal Laboratories for Materials Science and Technology Empa. Überlandstrasse 129 CH-8600 Dübendorf Switzerland
| | - Adam H Clark
- Energy and Environment Division, Paul Scherrer Insitut Forschungsstrasse 111 5232 Villigen PSI Switzerland
| | - Dariusz Kata
- Department of Ceramics and Refractories, Faculty of Materials Science and Ceramics, AGH University of Science and Technology al. Mickiewicza 30-059 Krakow Poland
| | - Thomas Graule
- Laboratory for High Performance Ceramics, Empa. Swiss Federal Laboratories for Materials Science and Technology Überlandstrasse 129 CH-8600 Dübendorf Switzerland
| | - Michael Stuer
- Laboratory for High Performance Ceramics, Empa. Swiss Federal Laboratories for Materials Science and Technology Überlandstrasse 129 CH-8600 Dübendorf Switzerland
| |
Collapse
|
6
|
Tsuppayakorn-aek P, Ahuja R, Bovornratanaraks T, Luo W. Superconducting Gap of Pressure Stabilized (Al 0.5Zr 0.5)H 3 from Ab Initio Anisotropic Migdal-Eliashberg Theory. ACS OMEGA 2022; 7:28190-28197. [PMID: 35990471 PMCID: PMC9386819 DOI: 10.1021/acsomega.2c02447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Motivated by Matthias' sixth rule for finding new superconducting materials in a cubic symmetry, we report the cluster expansion calculations, based on the density functional theory, of the superconducting properties of Al0.5Zr0.5H3. The Al0.5Zr0.5H3 structure is thermodynamically and dynamically stable up to at least 200 GPa. The structural properties suggest that the Al0.5Zr0.5H3 structure is a metallic. We calculate a superconducting transition temperature using the Allen-Dynes modified McMillan equation and anisotropic Migdal-Eliashberg equation. As result of this, the anisotropic Migdal-Eliashberg equation demonstrated that it exhibits superconductivity under high pressure with relatively high-T c of 55.3 K at a pressure of 100 GPa among a family of simple cubic structures. Therefore, these findings suggest that superconductivity could be observed experimentally in Al0.5Zr0.5H3.
Collapse
Affiliation(s)
- Prutthipong Tsuppayakorn-aek
- Extreme
Condition Physics Research Laboratory and Center of Excellence in
Physics of Energy Materials (CE:PEM), Department of Physics, Faculty
of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Thailand
Center of Excellence in Physics, Ministry of Higher Education, Science,
Research and Innovation, 328 Si Ayutthaya Road, Bangkok 10400, Thailand
| | - Rajeev Ahuja
- Materials
Theory, Department of Physics and Astronomy, Uppsala University, Box 530, SE-751 21 Uppsala, Sweden
- Department
of Physics, Indian Institute of Technology
(IIT) Ropar, Rupnagar 140001, Punjab, India
| | - Thiti Bovornratanaraks
- Extreme
Condition Physics Research Laboratory and Center of Excellence in
Physics of Energy Materials (CE:PEM), Department of Physics, Faculty
of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Thailand
Center of Excellence in Physics, Ministry of Higher Education, Science,
Research and Innovation, 328 Si Ayutthaya Road, Bangkok 10400, Thailand
| | - Wei Luo
- Materials
Theory, Department of Physics and Astronomy, Uppsala University, Box 530, SE-751 21 Uppsala, Sweden
| |
Collapse
|
7
|
Du M, Zhao W, Cui T, Duan D. Compressed superhydrides: the road to room temperature superconductivity. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:173001. [PMID: 35078164 DOI: 10.1088/1361-648x/ac4eaf] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Room-temperature superconductivity has been a long-held dream and an area of intensive research. The discovery of H3S and LaH10under high pressure, with superconducting critical temperatures (Tc) above 200 K, sparked a race to find room temperature superconductors in compressed superhydrides. In recent groundbreaking work, room-temperature superconductivity of 288 K was achieved in carbonaceous sulfur hydride at 267 GPa. Here, we describe the important attempts of hydrides in the process of achieving room temperature superconductivity in decades, summarize the main characteristics of high-temperature hydrogen-based superconductors, such as hydrogen structural motifs, bonding features, electronic structure as well as electron-phonon coupling etc. This work aims to provide an up-to-date summary of several type hydrogen-based superconductors based on the hydrogen structural motifs, including covalent superhydrides, clathrate superhydrides, layered superhydrides, and hydrides containing isolated H atom, H2and H3molecular units.
Collapse
Affiliation(s)
- Mingyang Du
- College of Physics, Jilin University, Changchun 130012, People's Republic of China
| | - Wendi Zhao
- Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Tian Cui
- College of Physics, Jilin University, Changchun 130012, People's Republic of China
- Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Defang Duan
- College of Physics, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|