1
|
Vega-Sagardía M, Cabezón EC, Delgado J, Ruiz-Moyano S, Garrido D. Screening Microbial Interactions During Inulin Utilization Reveals Strong Competition and Proteomic Changes in Lacticaseibacillus paracasei M38. Probiotics Antimicrob Proteins 2024; 16:993-1011. [PMID: 37227689 PMCID: PMC11126519 DOI: 10.1007/s12602-023-10083-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2023] [Indexed: 05/26/2023]
Abstract
Competition for resources is a common microbial interaction in the gut microbiome. Inulin is a well-studied prebiotic dietary fiber that profoundly shapes gut microbiome composition. Several community members and some probiotics, such as Lacticaseibacillus paracasei, deploy multiple molecular strategies to access fructans. In this work, we screened bacterial interactions during inulin utilization in representative gut microbes. Unidirectional and bidirectional assays were used to evaluate the effects of microbial interactions and global proteomic changes on inulin utilization. Unidirectional assays showed the total or partial consumption of inulin by many gut microbes. Partial consumption was associated with cross-feeding of fructose or short oligosaccharides. However, bidirectional assays showed strong competition from L. paracasei M38 against other gut microbes, reducing the growth and quantity of proteins found in the latter. L. paracasei dominated and outcompeted other inulin utilizers, such as Ligilactobacillus ruminis PT16, Bifidobacterium longum PT4, and Bacteroides fragilis HM714. The importance of strain-specific characteristics of L. paracasei, such as its high fitness for inulin consumption, allows it to be favored for bacterial competence. Proteomic studies indicated an increase in inulin-degrading enzymes in co-cultures, such as β-fructosidase, 6-phosphofructokinase, the PTS D-fructose system, and ABC transporters. These results reveal that intestinal metabolic interactions are strain-dependent and might result in cross-feeding or competition depending on total or partial consumption of inulin. Partial degradation of inulin by certain bacteria favors coexistence. However, when L. paracasei M38 totally degrades the fiber, this does not happen. The synergy of this prebiotic with L. paracasei M38 could determine the predominance in the host as a potential probiotic.
Collapse
Affiliation(s)
- Marco Vega-Sagardía
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, Chile
| | - Eva Cebrián Cabezón
- Facultad de Veterinaria, Higiene y Seguridad Alimentaria, Instituto Universitario de Investigación de Carne y Productos Cárnicos, Universidad de Extremadura, Avda. de las Ciencias s/n, 10003, Cáceres, Spain
| | - Josué Delgado
- Facultad de Veterinaria, Higiene y Seguridad Alimentaria, Instituto Universitario de Investigación de Carne y Productos Cárnicos, Universidad de Extremadura, Avda. de las Ciencias s/n, 10003, Cáceres, Spain
| | - Santiago Ruiz-Moyano
- Departamento de Producción Animal y Ciencia de los Alimentos, Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avda. Adolfo Suárez s/n, 06007, Badajoz, Spain.
- Instituto Universitario de Investigación de Recursos Agrarios (INURA), Universidad de Extremadura, Avda. de la Investigación s/n, Campus Universitario, 06006, Badajoz, Spain.
| | - Daniel Garrido
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, Chile.
| |
Collapse
|
2
|
Chen Y, Zhao Y, Lu H, Zhang W, Gai Y, Niu G, Meng X, Lv H, Qian X, Ding X, Chen J. Protective effect of short-chain fructo-oligosaccharides from chicory on alcohol-induced injury in GES-1 cells via Keap1/Nrf2 and NLRP3 inflammasome signaling pathways. Front Nutr 2024; 11:1374579. [PMID: 38807640 PMCID: PMC11132183 DOI: 10.3389/fnut.2024.1374579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/09/2024] [Indexed: 05/30/2024] Open
Abstract
Numerous studies have demonstrated that polysaccharides derived from chicory possess the ability to regulate host signaling and modify mucosal damage. Yet, the effect and mechanism of short-chain fructo-oligosaccharides (scFOS) on gastric mucosa remain unclear. Hence, the protective effect of three scFOS (1-Kestose, Nystose, and 1F-Fructofuranosylnystose) against ethanol-induced injury in gastric epithelial (GES-1) cells, and the underlying molecular mechanism involved was investigated in this study. Treatment with 7% ethanol decreased the cell viability of GES-1 cells, resulting in oxidative stress and inflammation. However, pretreatment with scFOS exhibited significant improvements in cell viability, and mitigated oxidative stress and inflammation. scFOS markedly elevated the protein expression of Nrf2, HO-1, SOD1 and SOD2, while suppressing the expression of Keap1. scFOS pretreatment could also maintain mitochondrial membrane potential balance and reduce apoptosis. In addition, scFOS was observed to reduce the protein level of NLRP3, Caspase-1 and ASC. In conclusion, scFOS served a preventive function in mitigating oxidative stress and inflammation in ethanol-exposed GES-1 cells through modulation of the Keap1/Nrf2 and NLRP3 inflammasome signaling pathways. Collectively, the results indicated that scFOS could significantly mitigate ethanol-induced gastric cell damage, suggesting its potential for safeguarding gastrointestinal health.
Collapse
Affiliation(s)
- Yan Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Yanan Zhao
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Hao Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weichen Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yanan Gai
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Guanting Niu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Xiuhua Meng
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Han Lv
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Xiaoguo Qian
- Fengning PingAn High-Tech Industrial Co., Ltd, Chengde, China
| | - Xiaoqin Ding
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Jian Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
3
|
Mahalak KK, Liu L, Bobokalonov J, Narrowe AB, Firrman J, Bittinger K, Hu W, Jones SM, Moustafa AM. Supplementation with soluble or insoluble rice-bran fibers increases short-chain fatty acid producing bacteria in the gut microbiota in vitro. Front Nutr 2024; 11:1304045. [PMID: 38798771 PMCID: PMC11116651 DOI: 10.3389/fnut.2024.1304045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/11/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction Studies have shown that a diet high in fiber and prebiotics has a positive impact on human health due largely to the fermentation of these compounds by the gut microbiota. One underutilized source of fiber may be rice bran, a waste product of rice processing that is used most frequently as an additive to livestock feed but may be a good source of fibers and other phenolic compounds as a human diet supplement. Previous studies focused on specific compounds extracted from rice bran showed that soluble fibers extracted from rice bran can improve glucose response and reduce weight gain in mouse models. However, less is known about changes in the human gut microbiota in response to regular rice bran consumption. Methods In this study, we used a Simulator of the Human Intestinal Microbial Ecology (SHIME®) to cultivate the human gut microbiota of 3 different donors in conditions containing either soluble or insoluble fiber fractions from rice bran. Using 16S rRNA amplicon sequencing and targeted metabolomics via Gas Chromatography-Mass Spectrometry, we explored how gut microbial communities developed provided different supplemental fiber sources. Results We found that insoluble and soluble fiber fractions increased short-chain fatty acid production, indicating that both fractions were fermented. However, there were differences in response between donors, for example the gut microbiota from donor 1 increased acetic acid production with both fiber types compared with control; whereas for donors 2 and 3, butanoic acid production increased with ISF and SF supplementation. Both soluble and insoluble rice bran fractions increased the abundance of Bifidobacterium and Lachnospiraceae taxa. Discussion Overall, analysis of the effect of soluble and insoluble rice bran fractions on the human in vitro gut microbiota and the metabolites produced revealed individually variant responses to these prebiotics.
Collapse
Affiliation(s)
- Karley K. Mahalak
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, United States
| | - LinShu Liu
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, United States
| | - Jamshed Bobokalonov
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, United States
- V. I. Nikitin Institute of Chemistry, National Academy of Sciences, Dushanbe, Tajikistan
| | - Adrienne B. Narrowe
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, United States
| | - Jenni Firrman
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, United States
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Weiming Hu
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Steven M. Jones
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Ahmed M. Moustafa
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
4
|
Rawat HK, Nath S, Sharma I, Kango N. Recent developments in the production of prebiotic fructooligosaccharides using fungal fructosyltransferases. Mycology 2024; 15:564-584. [PMID: 39678637 PMCID: PMC11636151 DOI: 10.1080/21501203.2024.2323713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/21/2024] [Indexed: 12/17/2024] Open
Abstract
Prebiotic nutritional ingredients have received attention due to their health-promoting potential and related uses in the food and nutraceutical industries. Recent times have witnessed an increasing interest in the use of fructooligosaccharides (FOS) as prebiotics and their generation using microbial enzymes. FOS consumption is known to confer health benefits such as protection against colon cancer, improved mineral absorption, lowering effect on serum lipid and cholesterol concentration, antioxidant properties, favourable dietary modulation of the human colonic microbiota, and immuno-modulatory effects. Comparative analysis of molecular models of various fructosyltransferases (FTases) reveals the mechanism of action and interaction of substrate with the active site. Microbial FTases carry out transfructosylation of sucrose into fructooligosaccharides (kestose, nystose, and fructofuranosylnystose), the most predominantly used prebiotic oligosaccharides. Furthermore, FOS has also been used for other purposes, such as low-calorie sweeteners, dietary fibres, and as the substrates for fermentation. This review highlights the occurrence, characteristics, immobilisation, and potential applications of FOS-generating fungal FTases. Production, heterologous expression, molecular characteristics, and modelling of fungal FTases underpinning their biotechnological prospects are also discussed.
Collapse
Affiliation(s)
- Hemant Kumar Rawat
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, India
| | - Suresh Nath
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, India
| | - Isha Sharma
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, India
| | - Naveen Kango
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, India
| |
Collapse
|
5
|
Rühlemann MC, Bang C, Gogarten JF, Hermes BM, Groussin M, Waschina S, Poyet M, Ulrich M, Akoua-Koffi C, Deschner T, Muyembe-Tamfum JJ, Robbins MM, Surbeck M, Wittig RM, Zuberbühler K, Baines JF, Leendertz FH, Franke A. Functional host-specific adaptation of the intestinal microbiome in hominids. Nat Commun 2024; 15:326. [PMID: 38182626 PMCID: PMC10770139 DOI: 10.1038/s41467-023-44636-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 12/20/2023] [Indexed: 01/07/2024] Open
Abstract
Fine-scale knowledge of the changes in composition and function of the human gut microbiome compared that of our closest relatives is critical for understanding the evolutionary processes underlying its developmental trajectory. To infer taxonomic and functional changes in the gut microbiome across hominids at different timescales, we perform high-resolution metagenomic-based analyzes of the fecal microbiome from over two hundred samples including diverse human populations, as well as wild-living chimpanzees, bonobos, and gorillas. We find human-associated taxa depleted within non-human apes and patterns of host-specific gut microbiota, suggesting the widespread acquisition of novel microbial clades along the evolutionary divergence of hosts. In contrast, we reveal multiple lines of evidence for a pervasive loss of diversity in human populations in correlation with a high Human Development Index, including evolutionarily conserved clades. Similarly, patterns of co-phylogeny between microbes and hosts are found to be disrupted in humans. Together with identifying individual microbial taxa and functional adaptations that correlate to host phylogeny, these findings offer insights into specific candidates playing a role in the diverging trajectories of the gut microbiome of hominids. We find that repeated horizontal gene transfer and gene loss, as well as the adaptation to transient microaerobic conditions appear to have played a role in the evolution of the human gut microbiome.
Collapse
Affiliation(s)
- M C Rühlemann
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany.
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany.
| | - C Bang
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - J F Gogarten
- Applied Zoology and Nature Conservation, University of Greifswald, Greifswald, Germany
- Helmholtz Institute for One Health, Helmholtz-Centre for Infection Research (HZI), Greifswald, Germany
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Berlin, Germany
- Viral Evolution, Robert Koch Institute, Berlin, Germany
| | - B M Hermes
- Evolutionary Genomics, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Institute of Experimental Medicine, Kiel University, Kiel, Germany
| | - M Groussin
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - S Waschina
- Nutriinformatics Research Group, Institute for Human Nutrition and Food Science, Kiel University, Kiel, Germany
| | - M Poyet
- Institute of Experimental Medicine, Kiel University, Kiel, Germany
| | - M Ulrich
- Helmholtz Institute for One Health, Helmholtz-Centre for Infection Research (HZI), Greifswald, Germany
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Berlin, Germany
| | - C Akoua-Koffi
- Training and Research Unit for in Medical Sciences, Alassane Ouattara University / University Teaching Hospital of Bouaké, Bouaké, Côte d'Ivoire
| | - T Deschner
- Comparative BioCognition, Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany
| | - J J Muyembe-Tamfum
- National Institute for Biomedical Research, National Laboratory of Public Health, Kinshasa, Democratic Republic of the Congo
| | - M M Robbins
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - M Surbeck
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - R M Wittig
- Institute of Cognitive Sciences, CNRS UMR5229 University Lyon 1, Bron Cedex, France
- Taï Chimpanzee Project, CSRS, Abidjan, Côte d'Ivoire
| | - K Zuberbühler
- Institute of Biology, University of Neuchatel, Neuchatel, Switzerland
- School of Psychology & Neuroscience, University of St Andrews, St Andrews, Scotland, UK
| | - J F Baines
- Evolutionary Genomics, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Institute of Experimental Medicine, Kiel University, Kiel, Germany
| | - F H Leendertz
- Helmholtz Institute for One Health, Helmholtz-Centre for Infection Research (HZI), Greifswald, Germany
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Berlin, Germany
| | - A Franke
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany.
| |
Collapse
|
6
|
Liao W, Li Y, Zhang Y, Yang Y, Yang T, Miao L. Comparative analysis of the transcriptional responses of Acetilactobacillus jinshanensis BJ01 to organic acids. Arch Microbiol 2023; 205:381. [PMID: 37968407 DOI: 10.1007/s00203-023-03715-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 11/17/2023]
Abstract
As the important functional microorganism in the brewing process of Chinese Baijiu, lactic acid bacteria influences the microbial community and production of flavor substances in the Baijiu brewing process. In this study, we first isolated an Acetilactobacillus jinshanensis strain from baijiu fermented grains and named it A. jinshanensis BJ01. Its optimal growth conditions are 30 °C and pH 3.5. In particular, A. jinshanensis BJ01 cannot utilize inorganic acids and most organic acids, except for lactic acid (HL) and acetic acid (HAc). The observed phenotypes showed good growth with HL. When the mixed acid of HL-HAc (V:V = 1:1) was used, the growth rate of A. jinshanensis BJ01 greatly accelerated. Transcriptomic sequencing revealed the specific responses of the strain to the acidulants used. The number of upregulated genes in HL-HAc medium was more than that in single acid medium (HL or HAc). KEGG enrichment analyses indicated that the glycometabolism level of HAc regulation was relatively downregulated. The gene expression of quorum sensing and ABC transporter pathways were remarkably upregulated under HL-HAc regulation. Pyruvate metabolic pathway may be an important reason for the difference in A. jinshanensis BJ01 response to different organic acids. Our study reported a new organic acid-inducible growth type of bacteria mainly depending on the presence of HL and HAc, and was beneficial to the improvement of fermentation technology of Baijiu.
Collapse
Affiliation(s)
- Weifang Liao
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
| | - Yaping Li
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
| | - Yuan Zhang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
| | - Yibin Yang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
| | - Tuanyuan Yang
- Hubei Baiyunbian Baijiu Co, Ltd, SongZi, 434200, People's Republic of China
| | - Lihong Miao
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China.
| |
Collapse
|
7
|
Mendonça AA, Pinto-Neto WDP, da Paixão GA, Santos DDS, De Morais MA, De Souza RB. Journey of the Probiotic Bacteria: Survival of the Fittest. Microorganisms 2022; 11:95. [PMID: 36677387 PMCID: PMC9861974 DOI: 10.3390/microorganisms11010095] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
This review aims to bring a more general view of the technological and biological challenges regarding production and use of probiotic bacteria in promoting human health. After a brief description of the current concepts, the challenges for the production at an industrial level are presented from the physiology of the central metabolism to the ability to face the main forms of stress in the industrial process. Once produced, these cells are processed to be commercialized in suspension or dried forms or added to food matrices. At this stage, the maintenance of cell viability and vitality is of paramount for the quality of the product. Powder products requires the development of strategies that ensure the integrity of components and cellular functions that allow complete recovery of cells at the time of consumption. Finally, once consumed, probiotic cells must face a very powerful set of physicochemical mechanisms within the body, which include enzymes, antibacterial molecules and sudden changes in pH. Understanding the action of these agents and the induction of cellular tolerance mechanisms is fundamental for the selection of increasingly efficient strains in order to survive from production to colonization of the intestinal tract and to promote the desired health benefits.
Collapse
Affiliation(s)
- Allyson Andrade Mendonça
- Laboratory of Microbial Genetics, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Walter de Paula Pinto-Neto
- Laboratory of Microbial Genetics, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Giselle Alves da Paixão
- Laboratory of Microbial Metabolism, Institute of Biological Sciences, University of Pernambuco, Recife 50100-130, Brazil
| | - Dayane da Silva Santos
- Laboratory of Microbial Genetics, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Marcos Antonio De Morais
- Laboratory of Microbial Genetics, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Rafael Barros De Souza
- Laboratory of Microbial Metabolism, Institute of Biological Sciences, University of Pernambuco, Recife 50100-130, Brazil
| |
Collapse
|
8
|
Park JH, Song WS, Lee J, Jo SH, Lee JS, Jeon HJ, Kwon JE, Kim YR, Baek JH, Kim MG, Yang YH, Kim BG, Kim YG. An Integrative Multiomics Approach to Characterize Prebiotic Inulin Effects on Faecalibacterium prausnitzii. Front Bioeng Biotechnol 2022; 10:825399. [PMID: 35252133 PMCID: PMC8894670 DOI: 10.3389/fbioe.2022.825399] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Faecalibacterium prausnitzii, a major commensal bacterium in the human gut, is well known for its anti-inflammatory effects, which improve host intestinal health. Although several studies have reported that inulin, a well-known prebiotic, increases the abundance of F. prausnitzii in the intestine, the mechanism underlying this effect remains unclear. In this study, we applied liquid chromatography tandem mass spectrometry (LC-MS/MS)-based multiomics approaches to identify biological and enzymatic mechanisms of F. prausnitzii involved in the selective digestion of inulin. First, to determine the preference for dietary carbohydrates, we compared the growth of F. prausnitzii in several carbon sources and observed selective growth in inulin. In addition, an LC-MS/MS-based intracellular proteomic and metabolic profiling was performed to determine the quantitative changes in specific proteins and metabolites of F. prausnitzii when grown on inulin. Interestingly, proteomic analysis revealed that the putative proteins involved in inulin-type fructan utilization by F. prausnitzii, particularly β-fructosidase and amylosucrase were upregulated in the presence of inulin. To investigate the function of these proteins, we overexpressed bfrA and ams, genes encoding β-fructosidase and amylosucrase, respectively, in Escherichia coli, and observed their ability to degrade fructan. In addition, the enzyme activity assay demonstrated that intracellular fructan hydrolases degrade the inulin-type fructans taken up by fructan ATP-binding cassette transporters. Furthermore, we showed that the fructose uptake activity of F. prausnitzii was enhanced by the fructose phosphotransferase system transporter when inulin was used as a carbon source. Intracellular metabolomic analysis indicated that F. prausnitzii could use fructose, the product of inulin-type fructan degradation, as an energy source for inulin utilization. Taken together, this study provided molecular insights regarding the metabolism of F. prauznitzii for inulin, which stimulates the growth and activity of the beneficial bacterium in the intestine.
Collapse
Affiliation(s)
- Ji-Hyeon Park
- Department of Chemical Engineering, Soongsil University, Seoul, South Korea
| | - Won-Suk Song
- Department of Chemical Engineering, Soongsil University, Seoul, South Korea
| | - Jeongchan Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul, South Korea
| | - Sung-Hyun Jo
- Department of Chemical Engineering, Soongsil University, Seoul, South Korea
| | - Jae-Seung Lee
- Department of Chemical Engineering, Soongsil University, Seoul, South Korea
| | - Hyo-Jin Jeon
- Department of Chemical Engineering, Soongsil University, Seoul, South Korea
| | - Ji-Eun Kwon
- Department of Chemical Engineering, Soongsil University, Seoul, South Korea
| | - Ye-Rim Kim
- Department of Chemical Engineering, Soongsil University, Seoul, South Korea
| | - Ji-Hyun Baek
- Department of Chemical Engineering, Soongsil University, Seoul, South Korea
| | - Min-Gyu Kim
- Department of Chemical Engineering, Soongsil University, Seoul, South Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, Konkuk University, Seoul, South Korea
| | - Byung-Gee Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, South Korea
| | - Yun-Gon Kim
- Department of Chemical Engineering, Soongsil University, Seoul, South Korea
| |
Collapse
|