1
|
Vasquez-Muñoz D, Rohne F, Meier I, Sharma A, Lomadze N, Santer S, Bekir M. Light-Induced Material Motion Fingerprint - A Tool Toward Selective Interfacial Sensitive Fractioning of Microparticles via Microfluidic Methods. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403546. [PMID: 38967188 DOI: 10.1002/smll.202403546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/08/2024] [Indexed: 07/06/2024]
Abstract
In this article, a novel strategy is presented to selectively separate a mixture of equally sized microparticles but differences in material composition and surface properties. The principle relies on a photosensitive surfactant, which makes particles under light illumination phoretically active. The latter hovers microparticles from a planar interface and together with a superimposed fluid flow, particles experience a drift motion characteristic to its interfacial properties. The drift motion is investigated as a function of applied wavelength, demonstrating that particles composed of different material show a unique spectrally resolved light-induced motion profile. Differences in those motion profile allow a selective fractioning of a desired particle from a complex particle mixture made out of more than two equally sized different particle types. Besides that, the influence of applied wavelength is systematically studied, and discussed the origin of the spectrally resolved chemical activity of microparticles from measured photo-isomerization rates.
Collapse
Affiliation(s)
| | - Fabian Rohne
- Institute of Physics and Astronomy, University of Potsdam, 14476, Potsdam, Germany
| | - Isabel Meier
- Institute of Physics and Astronomy, University of Potsdam, 14476, Potsdam, Germany
| | - Anjali Sharma
- Institute of Physics and Astronomy, University of Potsdam, 14476, Potsdam, Germany
| | - Nino Lomadze
- Institute of Physics and Astronomy, University of Potsdam, 14476, Potsdam, Germany
| | - Svetlana Santer
- Institute of Physics and Astronomy, University of Potsdam, 14476, Potsdam, Germany
| | - Marek Bekir
- Institute of Physics and Astronomy, University of Potsdam, 14476, Potsdam, Germany
| |
Collapse
|
2
|
Shin H, Hong L, Park W, Shin J, Park JB. Frequency dependence of nanorod self-alignment using microfluidic methods. NANOTECHNOLOGY 2024; 35:305603. [PMID: 38636472 DOI: 10.1088/1361-6528/ad403d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/18/2024] [Indexed: 04/20/2024]
Abstract
Dielectrophoresis is a potential candidate for aligning nanorods on electrodes, in which the interplay between electric fields and microfluidics is critically associated with its yield. Despite much of previous work on dielectrophoresis, the impact of frequency modulation on dielectrophoresis-driven nanorod self-assembly is insufficiently understood. In this work, we systematically explore the frequency dependence of the self-alignment of silicon nanorod using a microfluidic channel. We vary the frequency from 1kHz to 1000 kHz and analyze the resulting alignments in conjunction with numerical analysis. Our experiment reveals an optimal alignment yield at approximately 100 kHz, followed by a decrease in alignment efficiency. The nanorod self-alignments are influenced by multiple consequences, including the trapping effect, induced electrical double layer, electrohydrodynamic flow, and particle detachment. This study provides insights into the impact of frequency modulation of electric fields on the alignment of silicon nanorods using dielectrophoresis, broadening its use in various future nanotechnology applications.
Collapse
Affiliation(s)
- Hosan Shin
- Department of Applied Physics, Korea University, Sejong, 30019, Republic of Korea
| | - Lia Hong
- Department of Mechanical Systems Engineering, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Woosung Park
- Department of Mechanical Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Jeeyoung Shin
- Department of Mechanical Systems Engineering, Sookmyung Women's University, Seoul, 04310, Republic of Korea
- Institute of Advanced Materials and Systems, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Jae Byung Park
- Department of Applied Physics, Korea University, Sejong, 30019, Republic of Korea
| |
Collapse
|
3
|
Giesler J, Weirauch L, Rother A, Thöming J, Pesch GR, Baune M. Sorting Lithium-Ion Battery Electrode Materials Using Dielectrophoresis. ACS OMEGA 2023; 8:26635-26643. [PMID: 37521612 PMCID: PMC10373188 DOI: 10.1021/acsomega.3c04057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 06/29/2023] [Indexed: 08/01/2023]
Abstract
Lithium-ion batteries (LIBs) are common in everyday life and the demand for their raw materials is increasing. Additionally, spent LIBs should be recycled to achieve a circular economy and supply resources for new LIBs or other products. Especially the recycling of the active material of the electrodes is the focus of current research. Existing approaches for recycling (e.g., pyro-, hydrometallurgy, or flotation) still have their drawbacks, such as the loss of materials, generation of waste, or lack of selectivity. In this study, we test the behavior of commercially available LiFePO4 and two types of graphite microparticles in a dielectrophoretic high-throughput filter. Dielectrophoresis is a volume-dependent electrokinetic force that is commonly used in microfluidics but recently also for applications that focus on enhanced throughput. In our study, graphite particles show significantly higher trapping than LiFePO4 particles. The results indicate that nearly pure fractions of LiFePO4 can be obtained with this technique from a mixture with graphite.
Collapse
Affiliation(s)
- Jasper Giesler
- Chemical
Process Engineering, Faculty of Production Engineering, University of Bremen, Bremen 28359, Germany
| | - Laura Weirauch
- Chemical
Process Engineering, Faculty of Production Engineering, University of Bremen, Bremen 28359, Germany
| | - Alica Rother
- Center
for Environmental Research and Sustainable Technology (UFT), University of Bremen, Bremen 28359, Germany
| | - Jorg Thöming
- Chemical
Process Engineering, Faculty of Production Engineering, University of Bremen, Bremen 28359, Germany
- Center
for Environmental Research and Sustainable Technology (UFT), University of Bremen, Bremen 28359, Germany
| | - Georg R. Pesch
- School
of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Ireland
| | - Michael Baune
- Chemical
Process Engineering, Faculty of Production Engineering, University of Bremen, Bremen 28359, Germany
- Center
for Environmental Research and Sustainable Technology (UFT), University of Bremen, Bremen 28359, Germany
| |
Collapse
|
4
|
Lomeli-Martin A, Ahamed N, Abhyankar VV, Lapizco-Encinas BH. Electropatterning-Contemporary developments for selective particle arrangements employing electrokinetics. Electrophoresis 2023; 44:884-909. [PMID: 37002779 PMCID: PMC10330388 DOI: 10.1002/elps.202200286] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/25/2023] [Accepted: 03/27/2023] [Indexed: 04/04/2023]
Abstract
The selective positioning and arrangement of distinct types of multiscale particles can be used in numerous applications in microfluidics, including integrated circuits, sensors and biochips. Electrokinetic (EK) techniques offer an extensive range of options for label-free manipulation and patterning of colloidal particles by exploiting the intrinsic electrical properties of the target of interest. EK-based techniques have been widely implemented in many recent studies, and various methodologies and microfluidic device designs have been developed to achieve patterning two- and three-dimensional (3D) patterned structures. This review provides an overview of the progress in electropatterning research during the last 5 years in the microfluidics arena. This article discusses the advances in the electropatterning of colloids, droplets, synthetic particles, cells, and gels. Each subsection analyzes the manipulation of the particles of interest via EK techniques such as electrophoresis and dielectrophoresis. The conclusions summarize recent advances and provide an outlook on the future of electropatterning in various fields of application, especially those with 3D arrangements as their end goal.
Collapse
Affiliation(s)
- Adrian Lomeli-Martin
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, Rochester, New York, USA
| | - Nuzhet Ahamed
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, Rochester, New York, USA
| | - Vinay V. Abhyankar
- Biological Microsystems Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, Rochester, New York, USA
| | - Blanca H. Lapizco-Encinas
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, Rochester, New York, USA
| |
Collapse
|
5
|
Weirauch L, Giesler J, Baune M, Pesch G, Thöming J. Shape-selective remobilization of microparticles in a mesh-based DEP filter at high throughput. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
6
|
Sachs S, Cierpka C, König J. On the acoustically induced fluid flow in particle separation systems employing standing surface acoustic waves - Part II. LAB ON A CHIP 2022; 22:2028-2040. [PMID: 35485185 DOI: 10.1039/d2lc00106c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Particle separation using surface acoustic waves (SAWs) has been a focus of ongoing research for several years, leading to promising technologies based on Lab-on-a-Chip devices. In many of them, scattering effects of acoustic waves on suspended particles are utilized to manipulate their motion by means of the acoustic radiation force (FARF). Due to viscous damping of radiated waves within a fluid, known as the acoustic streaming effect, a superimposed fluid flow is generated, which additionally affects the trajectories of the particles by drag forces. To evaluate the influence of this acoustically induced flow on the fractionation of suspended particles, the present study gives a deep insight into the pattern and scaling of the resulting vortex structures by quantitative three-dimensional, three component (3D3C) velocity measurements. Following the analysis of translationally invariant structures at the center of a pseudo-standing surface acoustic wave (sSAW) in Part I, the focus in Part II turns to the outer regions of acoustic actuation. The impact of key parameters on the formation of the outer vortices, such as the wavelength of the SAW λSAW, the channel height H and electrical power Pel, is investigated with respect to the design of corresponding separation systems. As a result of large gradients in the acoustic fields, broadly extended vortices are formed, which can cause a lateral displacement of particles and are thus essential for a holistic analysis of the flow phenomena. The interaction with an externally imposed main flow reveals local recirculation regions, while the extent of the vortices is quantified based on the displacement of the main flow.
Collapse
Affiliation(s)
- Sebastian Sachs
- Institute of Thermodynamics and Fluid Mechanics, Technische Universität Ilmenau, D-98684 Ilmenau, Germany.
| | - Christian Cierpka
- Institute of Thermodynamics and Fluid Mechanics, Technische Universität Ilmenau, D-98684 Ilmenau, Germany.
- Institute of Micro- and Nanotechnologies, Technische Universität Ilmenau, D-98684 Ilmenau, Germany
| | - Jörg König
- Institute of Thermodynamics and Fluid Mechanics, Technische Universität Ilmenau, D-98684 Ilmenau, Germany.
| |
Collapse
|
7
|
The Suitability of Latex Particles to Evaluate Critical Process Parameters in Steric Exclusion Chromatography. MEMBRANES 2022; 12:membranes12050488. [PMID: 35629814 PMCID: PMC9144368 DOI: 10.3390/membranes12050488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/04/2022]
Abstract
The steric exclusion chromatography (SXC) is a rather new method for the purification of large biomolecules and biological nanoparticles based on the principles of precipitation. The mutual steric exclusion of a nonionic organic polymer, i.e., polyethylene glycol (PEG), induces target precipitation and leads to their retention on the chromatographic stationary phase. In this work, we investigated the application of latex particles in the SXC by altering the particle’s surface charge as well as the PEG concentration and correlated both with their aggregation behavior. The parameters of interest were offline precipitation kinetics, the product recovery and yield, and the chromatographic column blockage. Sulfated and hydroxylated polystyrene particles were first characterized concerning their aggregation behavior and charge in the presence of PEG and different pH conditions. Subsequently, the SXC performance was evaluated based on the preliminary tests. The studies showed (1) that the SXC process with latex particles was limited by aggregation and pore blockage, while (2) not the aggregate size itself, but rather the aggregation kinetics dominated the recoveries, and (3) functionalized polystyrene particles were only suitable to a limited extent to represent biological nanoparticles of comparable size and charge.
Collapse
|
8
|
Zhao K, Wei Y, Dong J, Zhao P, Wang Y, Pan X, Wang J. Separation and characterization of microplastic and nanoplastic particles in marine environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 297:118773. [PMID: 34974085 DOI: 10.1016/j.envpol.2021.118773] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/16/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Microplastics (<5 mm) are divided into primary and secondary microplastics, which are further degraded into nanoplastics. The microplastic particles are widely distributed in marine environment, terrestrial ecosystem and biological organism, leading to damages to whole environmental system. Microplastics are not only difficult to degrade, but also able to adsorb pollutants. Due to the tiny size and various properties, the separation and characterization of microplastic particles has become more and more challenging. This review introduces the sources and destinations of the microplastic particles and summarizes the general methods for the sorting and characterization of microplastics, especially the manipulation of microplastic particles on microfluidic chip, showing possibility to deal with smaller nanoplastic particles over traditional methods. This review focuses on studies of the size-based separation and property-dependent characterization of microplastics in marine environment by utilizing the microfluidic chip device.
Collapse
Affiliation(s)
- Kai Zhao
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, 116026, Dalian, China; Department of Information Science and Technology, Dalian Maritime University, 116026, Dalian, China
| | - Yunman Wei
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, 116026, Dalian, China; Department of Information Science and Technology, Dalian Maritime University, 116026, Dalian, China
| | - Jianhong Dong
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, 116026, Dalian, China; Department of Information Science and Technology, Dalian Maritime University, 116026, Dalian, China
| | - Penglu Zhao
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, 116026, Dalian, China; Department of Information Science and Technology, Dalian Maritime University, 116026, Dalian, China
| | - Yuezhu Wang
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, 116026, Dalian, China; Department of Environmental Sciences and Engineering, Dalian Maritime University, 116026, Dalian, China
| | - Xinxiang Pan
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, 116026, Dalian, China; Department of Maritime, Guangdong Ocean University, 524000, Zhanjiang, China
| | - Junsheng Wang
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, 116026, Dalian, China; Department of Information Science and Technology, Dalian Maritime University, 116026, Dalian, China.
| |
Collapse
|