1
|
Shaik SP, Karan HH, Singh A, Attuluri SK, Khan AAN, Zahid F, Patil D. HFpEF: New biomarkers and their diagnostic and prognostic value. Curr Probl Cardiol 2024; 49:102155. [PMID: 37866418 DOI: 10.1016/j.cpcardiol.2023.102155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023]
Abstract
Heart failure characterized by preserved ejection fraction (HFpEF) poses a substantial challenge to healthcare systems worldwide and the diagnostic algorithms used currently mirror those utilized for reduced Ejection Fraction (HFrEF). This literature review aims to explore the diagnostic and prognostic credibility of numerous emerging biomarkers associated with HFpEF. We conducted a thorough analysis of the available medical literature and selected the biomarkers which yielded the maximum amount of published information. After reviewing the current literature we conclude that there are no biomarkers at present which are superior to natriuretic peptides in terms of diagnosis and prognosis of HFpEF. However biomarkers like Suppression of tumorigenicity2, Galectin3 and microRNAs are promising and can be researched further for future use. Although newer individual biomarkers may not be useful in diagnosing and prognosis of HFpEF, we believe that a specific biomarker profile may be identified in each phenotype,which can be used in future.
Collapse
Affiliation(s)
- Shahanaz Parveen Shaik
- Junior Resident, Internal Medicine, DR. Y.S.R University of Health Sciences, Andhra Pradesh, India.
| | - Hasnain Hyder Karan
- Resident, Internal Medicine, San Joaquin General Hospital,French Camp, CA, United States
| | - Arkaja Singh
- Junior Resident, Mahatma Gandhi Medical College and Hospital, Jaipur, India
| | - Sai Kiran Attuluri
- Junior Resident, Internal Medicine, DR. Y.S.R University of Health Sciences, Andhra Pradesh, India
| | - Afnan Akram Nawaz Khan
- Junior Resident, Internal Medicine, Vydehi Institute of Medical Sciences, Bangalore, India
| | - Fazila Zahid
- Resident, Internal Medicine, OSF St Francis Hospital, University of Illinois College of Medicine; IL; USA
| | - Dhrumil Patil
- Postdoctoral Research fellow, Cardiology department, Beth Israel Deaconess Medical Center, Harvard University, USA
| |
Collapse
|
2
|
Wang CJ, Noble PB, Elliot JG, Choi YS, James AL, Wang KCW. Distribution, composition, and activity of airway-associated adipose tissue in the porcine lung. Am J Physiol Lung Cell Mol Physiol 2023; 324:L179-L189. [PMID: 36445102 DOI: 10.1152/ajplung.00288.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Patients with comorbid asthma-obesity experience greater disease severity and are less responsive to therapy. We have previously reported adipose tissue within the airway wall that positively correlated with body mass index. Accumulation of biologically active adipose tissue may result in the local release of adipokines and disrupt large and small airway function depending on its anatomical distribution. This study therefore characterized airway-associated adipose tissue distribution, lipid composition, and adipokine activity in a porcine model. Airway segments were systematically dissected from different locations of the bronchial tree in inflation-fixed lungs. Cryosections were stained with hematoxylin and eosin (H&E) for airway morphology, oil red O to distinguish adipose tissue, and Nile blue A for lipid subtype delineation. Excised airway-associated adipose tissue was cultured for 72 h to quantify adipokine release using immunoassays. Results showed that airway-associated adipose tissue extended throughout the bronchial tree and occupied an area proportionally similar to airway smooth muscle within the wall area. Lipid composition consisted of pure neutral lipids (61.7 ± 3.5%), a mixture of neutral and acidic lipids (36.3 ± 3.4%), or pure acidic lipids (2.0 ± 0.8%). Following tissue culture, there was rapid release of IFN-γ, IL-1β, and TNF-α at 12 h. Maximum IL-4 and IL-10 release was at 24 and 48 h, and peak leptin release occurred between 48 and 72 h. These data extend previous findings and demonstrate that airway-associated adipose tissue is prevalent and biologically active within the bronchial tree, providing a local source of adipokines that may be a contributing factor in airway disease.
Collapse
Affiliation(s)
- Carolyn J Wang
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Peter B Noble
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - John G Elliot
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia.,Department of Pulmonary Physiology and Sleep Medicine, West Australian Sleep Disorders Research Institute, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Yu Suk Choi
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Alan L James
- Department of Pulmonary Physiology and Sleep Medicine, West Australian Sleep Disorders Research Institute, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia.,Medical School, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Kimberley C W Wang
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia.,Telethon Kids Institute, The University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
3
|
Huang NW, Lin JH, Jhan JY, Hsu BG, Chang JC. Age and Serum Adipocyte Fatty-Acid-Binding Protein Level Are Associated with Aortic Stiffness in Coronary Artery Bypass Graft Patients. J Cardiovasc Dev Dis 2022; 9:jcdd9040105. [PMID: 35448081 PMCID: PMC9032052 DOI: 10.3390/jcdd9040105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 01/16/2023] Open
Abstract
Old age has been proven to be related to progressed arterial or aortic stiffness. Aortic stiffness is an independent predictor of all-cause and cardiovascular disease mortalities in patients who have undergone coronary artery bypass grafting (CABG) surgery. Higher serum concentrations of adipocyte fatty-acid-binding protein (A-FABP) could be considered a predictor of aortic stiffness in patients with hypertension or diabetes mellitus. This study aims to investigate the relationships between A-FABP and aortic stiffness in patients who have received CABG. A total of 84 CABG patients were enrolled in our study from September 2018 to May 2019. Serum A-FABP levels were determined using a commercial enzyme immunoassay. Carotid−femoral pulse wave velocity (cfPWV) > 10 m/s was defined as aortic stiffness. Of the 84 CABG patients, 28 (33.3%) with aortic stiffness had a higher average age; exhibited higher rates of diabetes; and had higher serum creatinine, C-reactive protein, and A-FABP levels compared to controls. Multivariable logistic regression revealed that serum A-FABP levels (odds ratio (OR) = 1.068, 95% confidence interval (CI) 1.017−1.121, p = 0.008) and age (OR = 1.204, 95% CI 1.067−1.359, p = 0.003) were independent predictors of aortic stiffness. Multivariable stepwise linear regression revealed significant positive correlations of age and A-FABP levels with cfPWV values. Serum A-FABP level is positively correlated with cfPWV values, and a high serum A-FABP level is associated with aortic stiffness in patients who have undergone CABG.
Collapse
Affiliation(s)
- Nai-Wei Huang
- Division of Cardiovascular Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan; (N.-W.H.); (J.-Y.J.)
| | - Jian-Hong Lin
- Division of Experimental Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan;
| | - Jin-You Jhan
- Division of Cardiovascular Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan; (N.-W.H.); (J.-Y.J.)
| | - Bang-Gee Hsu
- Division of Nephrology, Department of Internal Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan
- Department of Medicine, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
- Correspondence: (B.-G.H.); (J.-C.C.); Tel.: +886-3-8561825 (J.-C.C.)
| | - Jui-Chih Chang
- Division of Cardiovascular Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan; (N.-W.H.); (J.-Y.J.)
- Department of Surgery, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
- Correspondence: (B.-G.H.); (J.-C.C.); Tel.: +886-3-8561825 (J.-C.C.)
| |
Collapse
|
4
|
A-FABP in Metabolic Diseases and the Therapeutic Implications: An Update. Int J Mol Sci 2021; 22:ijms22179386. [PMID: 34502295 PMCID: PMC8456319 DOI: 10.3390/ijms22179386] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 12/11/2022] Open
Abstract
Adipocyte fatty acid-binding protein (A-FABP), which is also known as ap2 or FABP4, is a fatty acid chaperone that has been further defined as a fat-derived hormone. It regulates lipid homeostasis and is a key mediator of inflammation. Circulating levels of A-FABP are closely associated with metabolic syndrome and cardiometabolic diseases with imminent diagnostic and prognostic significance. Numerous animal studies have elucidated the potential underlying mechanisms involving A-FABP in these diseases. Recent studies demonstrated its physiological role in the regulation of adaptive thermogenesis and its pathological roles in ischemic stroke and liver fibrosis. Due to its implication in various diseases, A-FABP has become a promising target for the development of small molecule inhibitors and neutralizing antibodies for disease treatment. This review summarizes the clinical and animal findings of A-FABP in the pathogenesis of cardio-metabolic diseases in recent years. The underlying mechanism and its therapeutic implications are also highlighted.
Collapse
|