1
|
Watanabe M, Shrivastava RK, Balchandani P. Advanced neuroimaging of the trigeminal nerve and the whole brain in trigeminal neuralgia: a systematic review. Pain 2024:00006396-990000000-00680. [PMID: 39132931 DOI: 10.1097/j.pain.0000000000003365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/26/2024] [Indexed: 08/13/2024]
Abstract
ABSTRACT For trigeminal neuralgia (TN), a major role of imaging is to identify the causes, but recent studies demonstrated structural and microstructural changes in the affected nerve. Moreover, an increasing number of studies have reported central nervous system involvement in TN. In this systematic review, recent quantitative magnetic resonance imaging (MRI) studies of the trigeminal nerve and the brain in patients with TN were compiled, organized, and discussed, particularly emphasizing the possible background mechanisms and the interpretation of the results. A systematic search of quantitative MRI studies of the trigeminal nerve and the brain in patients with TN was conducted using PubMed. We included the studies of the primary TN published during 2013 to 2023, conducted for the assessment of the structural and microstructural analysis of the trigeminal nerve, and the structural, diffusion, and functional MRI analysis of the brain. Quantitative MRI studies of the affected trigeminal nerves and the trigeminal pathway demonstrated structural/microstructural alterations and treatment-related changes, which differentiated responders from nonresponders. Quantitative analysis of the brain revealed changes in the brain areas associated with pain processing/modulation and emotional networks. Studies of the affected nerve demonstrated evidence of demyelination and axonal damage, compatible with pathological findings, and have shown its potential value as a tool to assess treatment outcomes. Quantitative MRI has also revealed the possibility of dynamic microstructural, structural, and functional neuronal plasticity of the brain. Further studies are needed to understand these complex mechanisms of neuronal plasticity and to achieve a consensus on the clinical use of quantitative MRI in TN.
Collapse
Affiliation(s)
- Memi Watanabe
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Raj K Shrivastava
- Department of Neurosurgery, Mount Sinai Medical Center, New York, NY, United States
| | - Priti Balchandani
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
2
|
Zhang P, Wan X, Jiang J, Liu Y, Wang D, Ai K, Liu G, Zhang X, Zhang J. A causal effect study of cortical morphology and related covariate networks in classical trigeminal neuralgia patients. Cereb Cortex 2024; 34:bhae337. [PMID: 39123310 DOI: 10.1093/cercor/bhae337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/17/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Structural covariance networks and causal effects within can provide critical information on gray matter reorganization and disease-related hierarchical changes. Based on the T1WI data of 43 classical trigeminal neuralgia patients and 45 controls, we constructed morphological similarity networks of cortical thickness, sulcal depth, fractal dimension, and gyrification index. Moreover, causal structural covariance network analyses were conducted in regions with morphological abnormalities or altered nodal properties, respectively. We found that patients showed reduced sulcal depth, gyrification index, and fractal dimension, especially in the salience network and the default mode network. Additionally, the integration of the fractal dimension and sulcal depth networks was significantly reduced, accompanied by decreased nodal efficiency of the bilateral temporal poles, and right pericalcarine cortex within the sulcal depth network. Negative causal effects existed from the left insula to the right caudal anterior cingulate cortex in the gyrification index map, also from bilateral temporal poles to right pericalcarine cortex within the sulcal depth network. Collectively, patients exhibited impaired integrity of the covariance networks in addition to the abnormal gray matter morphology in the salience network and default mode network. Furthermore, the patients may experience progressive impairment in the salience network and from the limbic system to the sensory system in network topology, respectively.
Collapse
Affiliation(s)
- Pengfei Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Lane, Wuhou District, Chengdu, Sichuan 610041, China
- Department of Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730000, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
- Gansu Medical MRI Equipment Application Industry Technology Center, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
| | - Xinyue Wan
- Department of Radiology, Huashan Hospital, Fudan University, No. 12, Urumqi Middle Road, Jingan District, Shanghai 200040, China
| | - Jingqi Jiang
- Department of Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730000, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
- Gansu Medical MRI Equipment Application Industry Technology Center, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
| | - Yang Liu
- Department of Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730000, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
- Gansu Medical MRI Equipment Application Industry Technology Center, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
| | - Danyang Wang
- Department of Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730000, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
- Gansu Medical MRI Equipment Application Industry Technology Center, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
| | - Kai Ai
- Department of Clinical and Technical Supports, Philips Healthcare, No. 64 West Section, South 2nd Ring Road, Yanta District, Xi'an 710000, China
| | - Guangyao Liu
- Department of Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730000, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
- Gansu Medical MRI Equipment Application Industry Technology Center, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
| | - Xinding Zhang
- Department of Neurosurgery and Laboratory of Neurosurgery, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730000, China
| | - Jing Zhang
- Department of Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730000, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
- Gansu Medical MRI Equipment Application Industry Technology Center, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
| |
Collapse
|
3
|
Liu Y, Huang C, Xiong Y, Wang X, Shen Z, Zhang M, Gao N, Wang N, Du G, Zhan H. The causal relationship between human brain morphometry and knee osteoarthritis: a two-sample Mendelian randomization study. Front Genet 2024; 15:1420134. [PMID: 39040992 PMCID: PMC11260717 DOI: 10.3389/fgene.2024.1420134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/20/2024] [Indexed: 07/24/2024] Open
Abstract
Background Knee Osteoarthritis (KOA) is a prevalent and debilitating condition affecting millions worldwide, yet its underlying etiology remains poorly understood. Recent advances in neuroimaging and genetic methodologies offer new avenues to explore the potential neuropsychological contributions to KOA. This study aims to investigate the causal relationships between brain-wide morphometric variations and KOA using a genetic epidemiology approach. Method Leveraging data from 36,778 UK Biobank participants for human brain morphometry and 487,411 UK Biobank participants for KOA, this research employed a two-sample Mendelian Randomization (TSMR) approach to explore the causal effects of 83 brain-wide volumes on KOA. The primary method of analysis was the Inverse Variance Weighted (IVW) and Wald Ratio (WR) method, complemented by MR Egger and IVW methods for heterogeneity and pleiotropy assessments. A significance threshold of p < 0.05 was set to determine causality. The analysis results were assessed for heterogeneity using the MR Egger and IVW methods. Brain-wide volumes with Q_pval < 0.05 were considered indicative of heterogeneity. The MR Egger method was employed to evaluate the pleiotropy of the analysis results, with brain-wide volumes having a p-value < 0.05 considered suggestive of pleiotropy. Results Our findings revealed significant causal associations between KOA and eight brain-wide volumes: Left parahippocampal volume, Right posterior cingulate volume, Left transverse temporal volume, Left caudal anterior cingulate volume, Right paracentral volume, Left paracentral volume, Right lateral orbitofrontal volume, and Left superior temporal volume. These associations remained robust after tests for heterogeneity and pleiotropy, underscoring their potential role in the pathogenesis of KOA. Conclusion This study provides novel evidence of the causal relationships between specific brain morphometries and KOA, suggesting that neuroanatomical variations might contribute to the risk and development of KOA. These findings pave the way for further research into the neurobiological mechanisms underlying KOA and may eventually lead to the development of new intervention strategies targeting these neuropsychological pathways.
Collapse
Affiliation(s)
- Yongming Liu
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Chao Huang
- Yunyang County People’s Hospital Rehabilitation Medicine Department, Chongqing, China
| | - Yizhe Xiong
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Xiang Wang
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Zhibi Shen
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Mingcai Zhang
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Ningyang Gao
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Nan Wang
- Department of Traditional Chinese Medicine, Shanghai Yangzhi Rehabilitation Hospital (Yangzhi Affiliated Rehabilitation Hospital), School of Medicine, Tongji University, Shanghai, China
| | - Guoqing Du
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Hongsheng Zhan
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
4
|
You S, Qin X, Zhao G, Feng Z. Personalized 3D Printed Tooth-Supported Template as a Novel Strategy for Radiofrequency Thermocoagulation for Trigeminal Neuralgia After the Failure of CT-Guided Puncture. J Pain Res 2024; 17:2347-2356. [PMID: 38983246 PMCID: PMC11232956 DOI: 10.2147/jpr.s449447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/15/2024] [Indexed: 07/11/2024] Open
Abstract
Background Trigeminal neuralgia (TN) is a common form of craniofacial pain, and Radiofrequency thermocoagulation (RFT) has become a commonly utilized treatment modality for TN. However, the complex anatomical configuration of the maxillofacial region and the difficulties inherent in positioning the neck in a hyperextended manner can present challenges for CT-guided punctures. Aim The objective of this study is to assess the effectiveness and safety of 3D printed tooth-supported template(3D-PTST) guided RFT in patients who have previously undergone unsuccessful CT-guided puncture. Methods Patients with TN undergoing RFT at the Department of Pain Medicine, PLA General Hospital, from January 2018 to January 2023, were assessed. 3D-PTST guided RFT was employed as an alternative when percutaneous puncture failed. Clinical, demographic, and follow-up data were collected. The duration of the procedure was determined by subtracting the time of anesthesia administration from the time of surgical drape removal. Pain intensity was assessed using the Numerical Rating Scale-11 scale. Treatment effects were evaluated utilizing the Barrow Neurological Institute scale. Incidences of complications related to RFA were documented. Results Six TN patients underwent 3D-PTST guided RFT. With tooth-supported template guidance, five patients achieved therapeutic target puncture in one attempt with one CT scan. One patient required two attempts with two CT scans. Operation duration ranged from 18 to 46 mins (mean 30 mins). All completed 3D-PTST-guided RFT without difficulty, significantly improving pain symptoms. Four patients had no pain recurrence at 12, 18, 36 and 37 months follow-up, respectively. Recurrence occurred in two patients (at 1 and 13 months). No serious treatment-related complications were observed. Conclusion 3D-PTST guided RFT is an effective, repeatable, safe, and minimally invasive treatment method for patients with TN who have failed due to difficulty in puncture.
Collapse
Affiliation(s)
- Shaohua You
- Department of Pain Medicine, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Xiaoyan Qin
- Department of Clinical Laboratory, Shijingshan Teaching Hospital of Capital Medical University, Beijing Shijingshan Hospital, Beijing, 100049, People's Republic of China
| | - Guoli Zhao
- Department of Pain Medicine, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Zeguo Feng
- Department of Pain Medicine, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| |
Collapse
|
5
|
Yan J, Wang L, Pan L, Ye H, Zhu X, Feng Q, Wang H, Ding Z, Ge X. Altered trends of local brain function in classical trigeminal neuralgia patients after a single trigger pain. BMC Med Imaging 2024; 24:66. [PMID: 38500069 PMCID: PMC10949736 DOI: 10.1186/s12880-024-01239-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/05/2024] [Indexed: 03/20/2024] Open
Abstract
OBJECTIVE To investigate the altered trends of regional homogeneity (ReHo) based on time and frequency, and clarify the time-frequency characteristics of ReHo in 48 classical trigeminal neuralgia (CTN) patients after a single pain stimulate. METHODS All patients underwent three times resting-state functional MRI (before stimulation (baseline), after stimulation within 5 s (triggering-5 s), and in the 30th min of stimulation (triggering-30 min)). The spontaneous brain activity was investigated by static ReHo (sReHo) in five different frequency bands and dynamic ReHo (dReHo) methods. RESULTS In the five frequency bands, the number of brain regions which the sReHo value changed in classical frequency band were most, followed by slow 4 frequency band. The left superior occipital gyrus was only found in slow 2 frequency band and the left superior parietal gyrus was only found in slow 3 frequency band. The dReHo values were changed in midbrain, left thalamus, right putamen, and anterior cingulate cortex, which were all different from the brain regions that the sReHo value altered. There were four altered trends of the sReHo and dReHo, which dominated by decreased at triggering-5 s and increased at triggering-30 min. CONCLUSIONS The duration of brain function changed was more than 30 min after a single pain stimulate, although the pain of CTN was transient. The localized functional homogeneity has time-frequency characteristic in CTN patients after a single pain stimulate, and the changed brain regions of the sReHo in five frequency bands and dReHo complemented to each other. Which provided a certain theoretical basis for exploring the pathophysiology of CTN.
Collapse
Affiliation(s)
- Juncheng Yan
- Department of Rehabilitation, Hangzhou First People's Hospital, 310000, Hangzhou, China
| | - Luoyu Wang
- Department of Radiology, Hangzhou First People's Hospital, 310000, Hangzhou, China
- Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Cancer Center, Hangzhou First People's Hospital, 310006, Hangzhou, China
| | - Lei Pan
- Department of Radiology, Hangzhou First People's Hospital, 310000, Hangzhou, China
| | - Haiqi Ye
- Department of Radiology, Hangzhou First People's Hospital, 310000, Hangzhou, China
| | - Xiaofen Zhu
- Department of Radiology, Hangzhou First People's Hospital, 310000, Hangzhou, China
| | - Qi Feng
- Department of Radiology, Hangzhou First People's Hospital, 310000, Hangzhou, China
| | - Haibin Wang
- Department of Radiology, Hangzhou First People's Hospital, 310000, Hangzhou, China
| | - Zhongxiang Ding
- Department of Radiology, Hangzhou First People's Hospital, 310000, Hangzhou, China
- Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Cancer Center, Hangzhou First People's Hospital, 310006, Hangzhou, China
| | - Xiuhong Ge
- Department of Radiology, Hangzhou First People's Hospital, 310000, Hangzhou, China.
- Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Cancer Center, Hangzhou First People's Hospital, 310006, Hangzhou, China.
| |
Collapse
|
6
|
Xu H, Liu Y, Zeng WT, Fan YX, Wang Y. Distinctive cortical morphological patterns in primary trigeminal neuralgia: a cross-sectional clinical study. Neuroradiology 2024; 66:207-216. [PMID: 38001310 DOI: 10.1007/s00234-023-03257-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023]
Abstract
PURPOSE The characteristics of surface-based morphological patterns to primary trigeminal neuralgia (PTN) are still not well understood. This study aims to screen the useful cortical indices for the prediction of PTN and the quantification of pain severity. METHODS Fifty PTN patients and 48 matched healthy subjects enrolled in the study from March 2016 to August 2021. High-resolution T1 data were performed at 3.0 Tesla scanner and were analyzed with FreeSurfer software to detect the abnormalities of cortical mean curve (CMC), cortical thickness (CT), surface area (SA), and cortical volume (CV) in PTN patients compared to healthy controls. Logistic regression analysis was conducted to determine whether certain morphological patterns could predict PTN disorder. Then, the relationships of cortical indices to the pain characteristics in patient group were examined using linear regression model. RESULTS Distinctive cortical alterations were discovered through surface-based analysis, including increased temporal CMC, decreased insular CT and fusiform SA, along with decreased CV in several temporal and occipital areas. Moreover, the difference of temporal CMC was greater than other cortical parameters between the two groups, and the combination of certain morphological indices was of good value in the diagnosis for PTN. Besides, CT of left insula was negatively associated with the pain intensity in PTN patients. CONCLUSION The patients with PTN demonstrate distinctive morphological patterns in several cortical regions, which may contribute to the imaging diagnosis of this refractory disorder and be useful for the quantification of the orofacial pain. CLINICAL TRIALS The registry name of this study in https://clinicaltrials.gov/ : Magnetic Resonance Imaging Study on Patients with Trigeminal Neuralgia (MRI-TN) https://clinicaltrials.gov/ ID: NCT02713646 A link to the full application: https://clinicaltrials.gov/ct2/results?cond=&term=NCT02713646&cntry=&state=&city=&dist= The first patient with primary trigeminal neuralgia was recruited on November 28, 2016.
Collapse
Affiliation(s)
- Hui Xu
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yang Liu
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Wen-Tao Zeng
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Yu-Xin Fan
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Yuan Wang
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
7
|
Liu S, Hou X, Shi M, Shen Y, Li Z, Hu Z, Yang D. Cortical Sulcal Abnormalities Revealed by Sulcal Morphometry in Patients with Chronic and Episodic Migraine. J Pain Res 2024; 17:477-488. [PMID: 38318330 PMCID: PMC10843978 DOI: 10.2147/jpr.s447148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/21/2024] [Indexed: 02/07/2024] Open
Abstract
Purpose Previous studies have reported mixed results regarding the importance of cortical abnormalities in patients with migraines. However, cortical sulci, as a component of the cerebral cortex, have not been specifically investigated in migraine patients. Therefore, we aim to evaluate alterations in cortical sulcal morphology among patients with chronic migraine (CM), episodic migraine (EM), and healthy controls (HCs). Patients and Methods In this cross-sectional study, structural magnetic resonance images were acquired from 35 patients with CM, 35 with EM, and 35 HCs. Cortical sulci were identified and reconstructed using the BrainVisa 5.0.4 software. We focused on regions involved in pain processing in which abnormal cortical structure were identified in previous neuroimaging studies. Morphometric analysis was performed to calculate sulcal parameters including mean depth, cortical thickness, and opening width. Partial correlation analyses of clinical characteristics and sulcal parameters were performed for CM, EM and the combined migraine (CM + EM) groups. Results In comparison with HCs, both CM and EM groups showed increased opening width in bilateral insula. In comparison with HC and EM groups, CM patients showed increased cortical thickness in bilateral superior postcentral sulcus, bilateral median frontal sulcus and left superior parietal sulcus, as well as increased mean depth in the left anterior callosomarginal fissure and decreased mean depth in bilateral superior frontal sulcus and left median frontal sulcus. Migraine frequency and disease duration were both correlated with cortical thickness in bilateral superior postcentral sulcus. Conclusion Abnormal sulcal morphometry primarily affected areas associated with pain processing in patients with migraine, with CM exhibiting more extensive abnormalities in areas related to sensory and affective processing. These changes may contribute to understanding the pathology of EM and CM.
Collapse
Affiliation(s)
- Shanyu Liu
- Department of Neurology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Xiaolin Hou
- Department of Neurosurgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Min Shi
- Department of Neurology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Yuling Shen
- Department of Neurology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Zhaoying Li
- Department of Neurology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Zhenzhu Hu
- Department of Neurology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Dongdong Yang
- Department of Neurology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| |
Collapse
|
8
|
Bacon EJ, Jin C, He D, Hu S, Wang L, Li H, Qi S. Cortical surface analysis for focal cortical dysplasia diagnosis by using PET images. Heliyon 2024; 10:e23605. [PMID: 38187332 PMCID: PMC10770482 DOI: 10.1016/j.heliyon.2023.e23605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/14/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024] Open
Abstract
Focal cortical dysplasia (FCD) is a neurological disorder distinguished by faulty brain cell structure and development. Repetitive and uncontrollable seizures may be linked to FCD's aberrant cortical thickness, gyrification, and sulcal depth. Quantitative cortical surface analysis is a crucial alternative to ineffective visual inspection. This study recruited 42 subjects including 22 FCD patients who underwent surgery and 20 healthy controls (HC). For the FCD patients, T1-weighted and PET images were obtained by a PET-MRI scanner, and the confirmed epileptogenic zone (EZ) was collected from postsurgical follow-up. For the HCs, CT and PET images were obtained by a PET-CT scanner. Cortical thickness, gyrification index, and sulcal depth were calculated using a computational anatomical toolbox (CAT12). A cluster-based analysis is carried out to determine each FCD patient's aberrant cortical surface. After parcellating the cerebral cortex into 68 regions by the Desikan-Killiany atlas, a region of interest (ROI) analysis was conducted to know whether the feature in the FCD group is significantly different from that in the HC group. Finally, the features of all ROIs were utilised to train a support vector machine classifier (SVM). The classification performance is evaluated by the leave-one-out cross-validation. The cluster-based analysis can localize the EZ cluster with the highest accuracy of 54.5 % (12/22) for cortical thickness, 40.9 % (9/22) and 13.6 % (3/22) for sulcal depth and gyrification, respectively. Moderate concordance (Kappa, 0.6) is observed between the confirmed EZs and identified clusters by using the cortical thickness. Fair concordance (Kappa, 0.3) and no concordance (Kappa, 0.1) is found by using sulcal depth and gyrification. Significant differences are found in 46 of 68 regions (67.7 %) for the three measures. The trained SVM classifier achieved a prediction accuracy of 95.5 % for the cortical thickness, while the sulcal depth and the gyrification obtained 86.0 % and 81.5 %. Cortical thickness, as determined by quantitative cortical surface analysis of PET data, has a greater ability than sulcal depth and gyrification to locate aberrant EZ clusters in FCD. Surface measures might be different in many regions for FCD and HC. By integrating machine learning and cortical morphologies features, individual prediction of FCD seems to be feasible.
Collapse
Affiliation(s)
- Eric Jacob Bacon
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China
| | - Chaoyang Jin
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Dianning He
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Shuaishuai Hu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lanbo Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Han Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shouliang Qi
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China
| |
Collapse
|
9
|
Ge X, Wang L, Yan J, Pan L, Ye H, Zhu X, Feng Q, Chen B, Du Q, Yu W, Ding Z. Altered brain function in classical trigeminal neuralgia patients: ALFF, ReHo, and DC static- and dynamic-frequency study. Cereb Cortex 2024; 34:bhad455. [PMID: 38012118 DOI: 10.1093/cercor/bhad455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2023] Open
Abstract
The present study aimed to clarify the brain function of classical trigeminal neuralgia (CTN) by analyzing 77 CTN patients and age- and gender-matched 73 healthy controls (HCs) based on three frequency bands of the static and dynamic amplitude of low-frequency fluctuation, regional homogeneity, and degree centrality (sALFF, sReHo, sDC, dALFF, dReHo, and dDC). Compared to HCs, the number of altered brain regions was different in three frequency bands, and the classical frequency band was most followed by slow-4 in CTN patients. Cerrelellum_8_L (sReHo), Cerrelellum_8_R (sDC), Calcarine_R (sDC), and Caudate_R (sDC) were found only in classical frequency band, while Precuneus_L (sALFF) and Frontal_Inf_Tri_L (sReHo) were found only in slow-4 frequency band. Except for the above six brain regions, the others overlapped in the classical and slow-4 frequency bands. CTN seriously affects the mental health of patients, and some different brain regions are correlated with clinical parameters. The static and dynamic indicators of brain function were complementary in CTN patients, and the changing brain regions showed frequency specificity. Compared to slow-5 frequency band, slow-4 is more consistent with the classical frequency band, which could be valuable in exploring the pathophysiology of CTN.
Collapse
Affiliation(s)
- Xiuhong Ge
- Department of Radiology, Hangzhou First People's Hospital, No. 261, Huansha Road, Shangcheng District, Hangzhou City, Zhejiang Province 310000, China
- Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, No. 261, Huansha Road, Shangcheng District, Hangzhou City, Zhejiang Province 310000, China
| | - Luoyu Wang
- Department of Radiology, Hangzhou First People's Hospital, No. 261, Huansha Road, Shangcheng District, Hangzhou City, Zhejiang Province 310000, China
- Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, No. 261, Huansha Road, Shangcheng District, Hangzhou City, Zhejiang Province 310000, China
| | - Juncheng Yan
- Department of Rehabilitation, Hangzhou First People's Hospital, No. 261, Huansha Road, Shangcheng District, Hangzhou City, Zhejiang Province 310000, China
| | - Lei Pan
- Department of Radiology, Hangzhou First People's Hospital, No. 261, Huansha Road, Shangcheng District, Hangzhou City, Zhejiang Province 310000, China
| | - Haiqi Ye
- Department of Radiology, Hangzhou First People's Hospital, No. 261, Huansha Road, Shangcheng District, Hangzhou City, Zhejiang Province 310000, China
| | - Xiaofen Zhu
- Department of Radiology, Hangzhou First People's Hospital, No. 261, Huansha Road, Shangcheng District, Hangzhou City, Zhejiang Province 310000, China
| | - Qi Feng
- Department of Radiology, Hangzhou First People's Hospital, No. 261, Huansha Road, Shangcheng District, Hangzhou City, Zhejiang Province 310000, China
| | - Bing Chen
- Jing Hengyi School of Education, Hangzhou Normal University, No. 2318, Yuhang Tang Road, Yuhang District, Hangzhou City, Zhejiang Province 311121, China
| | - Quan Du
- Department of Neurosurgery, Hangzhou First People's Hospital, No. 261, Huansha Road, Shangcheng District, Hangzhou City, Zhejiang Province 310000, China
| | - Wenhua Yu
- Department of Neurosurgery, Hangzhou First People's Hospital, No. 261, Huansha Road, Shangcheng District, Hangzhou City, Zhejiang Province 310000, China
| | - Zhongxiang Ding
- Department of Radiology, Hangzhou First People's Hospital, No. 261, Huansha Road, Shangcheng District, Hangzhou City, Zhejiang Province 310000, China
- Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, No. 261, Huansha Road, Shangcheng District, Hangzhou City, Zhejiang Province 310000, China
| |
Collapse
|
10
|
DÜZKALIR HG, GENÇ B, SAĞER SG, TÜRKYILMAZ A, GÜNBEY HP. Microstructural evaluation of the brain with advanced magnetic resonance imaging techniques in cases of electrical status epilepticus during sleep (ESES). Turk J Med Sci 2023; 53:1840-1851. [PMID: 38813507 PMCID: PMC10760578 DOI: 10.55730/1300-0144.5754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/12/2023] [Accepted: 10/25/2023] [Indexed: 05/31/2024] Open
Abstract
Background/aim The cause and treatment of electrical status epilepticus during sleep (ESES), one of the epileptic encephalopathies of childhood, is unclear. The aim of this study was to evaluate possible microstructural abnormalities in the brain using advanced magnetic resonance imaging (MRI) techniques in ESES patients with and without genetic mutations. Materials and methods This research comprised 12 ESES patients without structural thalamic lesions (6 with genetic abnormalities and 6 without) and 12 healthy children. Whole-exome sequencing was used for the genetic mutation analysis. Brain MRI data were evaluated using tractus-based spatial statistics, voxel-based morphometry, a local gyrification index, subcortical shape analysis, FreeSurfer volume, and cortical thickness. The data of the groups were compared. Results The mean age in the control group was 9.05 ± 1.85 years, whereas that in the ESES group was 9.45 ± 2.72 years. Compared to the control group, the ESES patients showed higher mean thalamus diffusivity (p < 0.05). ESES patients with genetic mutations had lower axial diffusivity in the superior longitudinal fasciculus and gray matter volume in the entorhinal region, accumbens area, caudate, putamen, cerebral white matter, and outer cerebellar areas. The superior and middle temporal cortical thickness increased in the ESES patients. Conclusion This study is important in terms of presenting the microstructural evaluation of the brain in ESES patients with advanced MRI analysis methods as well as comparing patients with and without genetic mutations. These findings may be associated with corticostriatal transmission, ictogenesis, epileptogenesis, neuropsychiatric symptoms, cognitive impairment, and cerebellar involvement in ESES. Expanded case-group studies may help to understand the physiology of the corticothalamic circuitry in its etiopathogenesis and develop secondary therapeutic targets for ESES.
Collapse
Affiliation(s)
| | - Barış GENÇ
- Department of Radiology, Samsun Education and Research Hospital, Samsun,
Turkiye
| | - Safiye Güneş SAĞER
- Department of Pediatric Neurology, Kartal Dr. Lütfi Kırdar City Hospital, İstanbul,
Turkiye
| | - Ayberk TÜRKYILMAZ
- Department of Medical Genetics, Faculty of Medicine, Karadeniz Technical University, Trabzon,
Turkiye
| | - Hediye Pınar GÜNBEY
- Department of Radiology, Kartal Dr. Lütfi Kırdar City Hospital, İstanbul,
Turkiye
| |
Collapse
|
11
|
Genç B, Aslan K, Şen S, İncesu L. Cortical morphological changes in multiple sclerosis patients: a study of cortical thickness, sulcal depth, and local gyrification index. Neuroradiology 2023; 65:1405-1413. [PMID: 37344675 DOI: 10.1007/s00234-023-03185-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/12/2023] [Indexed: 06/23/2023]
Abstract
PURPOSE Multiple sclerosis (MS) is a disease that progresses not only with demyelination but also with neurodegeneration. One of the goals of drug treatment in MS is to prevent neurodegeneration. Cortical thickness (CT), sulcal depth (SD), and local gyrification index (LGI) are indicators related to neurodegeneration. The aim of this study is to investigate changes in CT, SD, and LGI in patients with relapsing-remitting MS (RRMS). METHODS T1 images of 74 RRMS patients and 65 healthy controls were used. T1 hypointense areas in RRMS patients were corrected using fully automated methods. CT, SD, and LGI were calculated for each patient. RESULTS RRMS patients showed widespread cortical thinning, especially in bilateral temporoparietal areas, decreased SD in bilateral supramarginal gyrus, superior temporal gyrus, postcentral gyrus, and transverse temporal gyrus, and decreased LGI, especially in the left posterior cingulate gyrus and insula. The decrease in cortical thickness was associated with the number of attacks and lesion volume. EDSS was related to CT in the right lingual, inferior temporal, and fusiform gyrus. The LGI was correlated with T2 lesion volume in bilateral insula, with EDSS in the right insula and transverse and superior temporal gyri, and with the number of attacks in the right paracentral gyrus and pre-cuneus. However, SD did not show any correlation with EDSS, T2 lesion volume, or the number of attacks. CONCLUSION Our results demonstrate widespread cortical thinning, decreased sulcal depth in local areas, and decreased gyrification in folds in RRMS patients, which are related to clinical parameters.
Collapse
Affiliation(s)
- Barış Genç
- Department of Radiology, Samsun Education and Research Hospital, İlkadım, 55060, Samsun, Turkey.
| | - Kerim Aslan
- Department of Neuroradiology, Ondokuz Mayıs University School of Medicine, Samsun, Turkey
| | - Sedat Şen
- Department of Neurology, Ondokuz Mayıs University School of Medicine, Samsun, Turkey
| | - Lütfi İncesu
- Department of Neuroradiology, Ondokuz Mayıs University School of Medicine, Samsun, Turkey
| |
Collapse
|
12
|
Huang X, Li B, Li Y, Lin J, Shang H, Yang J. A multimodal meta-analysis of gray matter alterations in trigeminal neuralgia. Front Neurol 2023; 14:1179896. [PMID: 37602249 PMCID: PMC10436096 DOI: 10.3389/fneur.2023.1179896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 07/14/2023] [Indexed: 08/22/2023] Open
Abstract
Background Brain gray matter alterations in patients with trigeminal neuralgia (TN) have been detected in prior neuroimaging studies, but the results are heterogeneous. The current study conducted coordinate-based meta-analyses across neuroimaging studies, aiming to find the pattern of brain anatomic and functional alterations in patients with TN. Methods We performed a systematic literature search of PubMed, Embase, and Web of Science to identify relevant publications. A multimodal meta-analysis for whole-brain voxel-based morphometry (VBM) studies and functional imaging studies in TN was performed using anisotropic effect size-based signed differential mapping. Results The meta-analysis comprised 10 VBM studies with 398 TN patients and 275 healthy controls, and 13 functional magnetic resonance imaging studies with 307 TN patients and 264 healthy controls. The multimodal meta-analysis showed conjoint structural and functional brain alterations in the right fusiform gyrus and inferior temporal gyrus, bilateral thalamus, left superior temporal gyrus, left insula, and inferior frontal gyrus. The unimodal meta-analysis showed decreased gray matter volume alone in the left putamen, left postcentral gyrus, and right amygdala as well as only functional abnormalities in the left cerebellum, bilateral precuneus, and left middle temporal gyrus. Conclusion This meta-analysis revealed overlapping anatomic and functional gray matter abnormalities in patients with TN, which may help provide new insights into the neuropathology and potential treatment biomarkers of TN.
Collapse
Affiliation(s)
- Xiang Huang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Boyi Li
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yuming Li
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Junyu Lin
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Huifang Shang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Jing Yang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
13
|
Ge X, Wang L, Pan L, Ye H, Zhu X, Fan S, Feng Q, Du Q, Yu W, Ding Z. Alteration of the cortical morphology in classical trigeminal neuralgia: voxel-, deformation-, and surface-based analysis. J Headache Pain 2023; 24:17. [PMID: 36809919 PMCID: PMC9942396 DOI: 10.1186/s10194-023-01544-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/02/2023] [Indexed: 02/24/2023] Open
Abstract
OBJECTIVE This study aimed to combine voxel-based morphometry, deformation-based morphometry, and surface-based morphometry to analyze gray matter volume and cortex shape in classical trigeminal neuralgia patients. METHODS This study included 79 classical trigeminal neuralgia patients and age- and sex-matched 81 healthy controls. The aforementioned three methods were used to analyze brain structure in classical trigeminal neuralgia patients. Spearman correlation analysis was used to analyze the correlation of brain structure with the trigeminal nerve and clinical parameters. RESULTS The bilateral trigeminal nerve was atrophied, and the ipsilateral trigeminal nerve volume was smaller than the contralateral volume in the classical trigeminal neuralgia. The gray matter volume of Temporal_Pole_Sup_R and Precentral_R was found to be decreased using voxel-based morphometry. The gray matter volume of Temporal_Pole_Sup_R had a positive correlation with disease duration and a negative correlation with the cross-section area of the compression point and the quality-of-life score in trigeminal neuralgia. The gray matter volume of Precentral_R was negatively correlated with the ipsilateral volume of the trigeminal nerve cisternal segment, cross-section area of compression point, and visual analogue scale. The gray matter volume of Temporal_Pole_Sup_L was found to be increased using deformation-based morphometry and had a negative correlation with the self-rating anxiety scale. The gyrification of the middle temporal gyrus_L increased and the Postcentral_L thickness decreased, as detected using surface-based morphometry. CONCLUSIONS The gray matter volume and cortical morphology of pain-related brain regions were correlated with clinical and trigeminal nerve parameters. voxel-based morphometry, deformation-based morphometry, and surface-based morphometry complemented each other in analyzing the brain structures of patients with classical trigeminal neuralgia and provided a basis for studying the pathophysiology of classical trigeminal neuralgia.
Collapse
Affiliation(s)
- Xiuhong Ge
- grid.13402.340000 0004 1759 700XDepartment of Radiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310000 People’s Republic of China ,Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Cancer Center, Affiliated Hangzhou First People’s HospitalZhejiang University School of MedicineShangcheng District, No.261, Huansha RoadZhejiang Province, Hangzhou, 310006 China
| | - Luoyu Wang
- grid.13402.340000 0004 1759 700XDepartment of Radiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310000 People’s Republic of China ,Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Cancer Center, Affiliated Hangzhou First People’s HospitalZhejiang University School of MedicineShangcheng District, No.261, Huansha RoadZhejiang Province, Hangzhou, 310006 China
| | - Lei Pan
- grid.13402.340000 0004 1759 700XDepartment of Radiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310000 People’s Republic of China
| | - Haiqi Ye
- grid.13402.340000 0004 1759 700XDepartment of Radiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310000 People’s Republic of China
| | - Xiaofen Zhu
- grid.13402.340000 0004 1759 700XDepartment of Radiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310000 People’s Republic of China
| | - Sandra Fan
- grid.268505.c0000 0000 8744 8924Zhejiang Chinese Medical University, Hangzhou, China
| | - Qi Feng
- grid.13402.340000 0004 1759 700XDepartment of Radiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310000 People’s Republic of China
| | - Quan Du
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, People's Republic of China.
| | - Wenhua Yu
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, People's Republic of China.
| | - Zhongxiang Ding
- Department of Radiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, People's Republic of China. .,Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Cancer Center, Affiliated Hangzhou First People's HospitalZhejiang University School of MedicineShangcheng District, No.261, Huansha RoadZhejiang Province, Hangzhou, 310006, China.
| |
Collapse
|
14
|
Tu Y, Wang J, Xiong F, Gao F. Cortical abnormalities in patients with fibromyalgia: a pilot study of surface-based morphometry analysis. PAIN MEDICINE 2022; 23:1939-1946. [PMID: 35881694 DOI: 10.1093/pm/pnac101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 06/05/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Although neuroanatomical studies correlated to fibromyalgia (FM) are gaining increasing interest, the cortical morphology of patients are largely unknown, and data on cortical gyrification are scarce. The objective of the present study is to assess the cortical morphology in female patients with FM compared with healthy controls (HC) using surface-based morphometry (SBM) analysis of magnetic resonance imaging (MRI). METHODS T1-MRIs and clinical data of 20 FM patients and 20 HC subjects were obtained from a public databset via OpenNeuro. For each subject, surface parameters including cortical thickness, local gyrification index (LGI), sulcal depth, and fractal dimensionality were estimated using SBM analysis. These data were compared between two groups controlled by age. The correlations between regional SBM parameters showing group differences and clinical profiles were analyzed. RESULTS Compared with HC subjects, FM patients showed reduced cortical thickness in right primary motor cortex, lower LGI in right rostral anterior cingulate and higher sulcal depth in right precuneus (p < 0.05 cluster level family- wise error corrected). In FM patients, correlation analysis showed that the cortical thickness in right primary motor cortex were inversely correlated with scores of pain catastrophizing scale (r = -0.498, p = 0.030) and pain self-perception scale (r = -0.527, p = 0.020), and disease duration (r = -0.488, p = 0.034), respectively. CONCLUSIONS Our findings provide evidence of neuroanatomical aberrations in FM patients, which may provide insight into the neuropathology of FM.
Collapse
Affiliation(s)
- Ye Tu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jihong Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Xiong
- Department of Radiology, PLA Central Theater General Hospital, Wuhan, China
| | - Feng Gao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|