1
|
Gätjens-Boniche O, Jiménez-Madrigal JP, Whetten RW, Valenzuela-Diaz S, Alemán-Gutiérrez A, Hanson PE, Pinto-Tomás AA. Microbiome and plant cell transformation trigger insect gall induction in cassava. FRONTIERS IN PLANT SCIENCE 2023; 14:1237966. [PMID: 38126017 PMCID: PMC10731979 DOI: 10.3389/fpls.2023.1237966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/18/2023] [Indexed: 12/23/2023]
Abstract
Several specialised insects can manipulate normal plant development to induce a highly organised structure known as a gall, which represents one of the most complex interactions between insects and plants. Thus far, the mechanism for insect-induced plant galls has remained elusive. To study the induction mechanism of insect galls, we selected the gall induced by Iatrophobia brasiliensis (Diptera: Cecidomyiidae) in cassava (Euphorbiaceae: Manihot esculenta Crantz) as our model. PCR-based molecular markers and deep metagenomic sequencing data were employed to analyse the gall microbiome and to test the hypothesis that gall cells are genetically transformed by insect vectored bacteria. A shotgun sequencing discrimination approach was implemented to selectively discriminate between foreign DNA and the reference host plant genome. Several known candidate insertion sequences were identified, the most significant being DNA sequences found in bacterial genes related to the transcription regulatory factor CadR, cadmium-transporting ATPase encoded by the cadA gene, nitrate transport permease protein (nrtB gene), and arsenical pump ATPase (arsA gene). In addition, a DNA fragment associated with ubiquitin-like gene E2 was identified as a potential accessory genetic element involved in gall induction mechanism. Furthermore, our results suggest that the increased quality and rapid development of gall tissue are mostly driven by microbiome enrichment and the acquisition of critical endophytes. An initial gall-like structure was experimentally obtained in M. esculenta cultured tissues through inoculation assays using a Rhodococcus bacterial strain that originated from the inducing insect, which we related to the gall induction process. We provide evidence that the modification of the endophytic microbiome and the genetic transformation of plant cells in M. esculenta are two essential requirements for insect-induced gall formation. Based on these findings and having observed the same potential DNA marker in galls from other plant species (ubiquitin-like gene E2), we speculate that bacterially mediated genetic transformation of plant cells may represent a more widespread gall induction mechanism found in nature.
Collapse
Affiliation(s)
- Omar Gätjens-Boniche
- Laboratorio de Biología Molecular, Escuela de Ciencias Naturales y Exactas, Campus Tecnológico Local San Carlos, Instituto Tecnológico de Costa Rica, Alajuela, Costa Rica
| | - Jose Pablo Jiménez-Madrigal
- Laboratorio de Biología Molecular, Escuela de Ciencias Naturales y Exactas, Campus Tecnológico Local San Carlos, Instituto Tecnológico de Costa Rica, Alajuela, Costa Rica
| | - Ross W. Whetten
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
| | - Sandro Valenzuela-Diaz
- Human Microbiome Research Program, Faculty of Medicine, The Helsinki University, Helsinki, Finland
| | - Alvaro Alemán-Gutiérrez
- Laboratorio de Biología Molecular, Escuela de Ciencias Naturales y Exactas, Campus Tecnológico Local San Carlos, Instituto Tecnológico de Costa Rica, Alajuela, Costa Rica
- Laboratorio de Genómica y Biodiversidad, Facultad de Ciencias, Universidad del Bío-Bío, Chillán, Chile
| | - Paul E. Hanson
- Escuela de Biología, Universidad de Costa Rica, San Pedro, San José, Costa Rica
| | - Adrián A. Pinto-Tomás
- Center for Research in Microscopic Structures and Department of Biochemistry, School of Medicine, University of Costa Rica, San José, Costa Rica
| |
Collapse
|
2
|
Mobilome of the Rhus Gall Aphid Schlechtendalia chinensis Provides Insight into TE Insertion-Related Inactivation of Functional Genes. Int J Mol Sci 2022; 23:ijms232415967. [PMID: 36555609 PMCID: PMC9783078 DOI: 10.3390/ijms232415967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Transposable elements (TEs) comprise a considerable proportion of insect genomic DNA; how they contribute to genome structure and organization is still poorly understood. Here, we present an analysis of the TE repertoire in the chromosome-level genome assembly of Rhus gall aphid Schlechtendalia chinensis. The TE fractions are composed of at least 32 different superfamilies and many TEs from different families were transcriptionally active in the S. chinensis genome. Furthermore, different types of transposase-derived proteins were also found in the S. chinensis genome. We also provide insight into the TEs related insertional inactivation, and exogenization of TEs in functional genes. We considered that the presence of TE fragments in the introns of functional genes could impact the activity of functional genes, and a large number of TE fragments in introns could lead to the indirect inactivation of functional genes. The present study will be beneficial in understanding the role and impact of TEs in genomic evolution of their hosts.
Collapse
|
3
|
Ahmad A, Su X, Harris AJ, Ren Z. Closing the Gap: Horizontal Transfer of Mariner Transposons between Rhus Gall Aphids and Other Insects. BIOLOGY 2022; 11:731. [PMID: 35625459 PMCID: PMC9139091 DOI: 10.3390/biology11050731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/17/2022]
Abstract
Horizontal transfer of transposons (HTT) is an essential source of genomic evolution in eukaryotes. The HTT dynamics are well characterized in eukaryotes, including insects; however, there is a considerable gap in knowledge about HTT regarding many eukaryotes' species. In this study, we analyzed the events of the HTT between Rhus gall aphids (Hemiptera) and other insects. We analyzed the Mariner-like transposable elements (MLEs) belonging to Rhus gall aphids for the possible HT events. The MLEs have a patchy distribution and high similarity over the entire element length with insect MLEs from different orders. We selected representative sequences from the Rhus gall MLEs and identified five events of HT between MLEs of Rhus gall aphids and other insects from five different orders. We also found multiple HTT events among the MLEs of insects from the five orders, demonstrating that these Mariner elements have been involved in recurrent HT between Rhus gall aphids and other insects. Our current study closed the knowledge gap surrounding HTT and reported the events between Rhus gall aphids and other insects for the first time. We believe that this study about HTT events will help us understand the evolution and spread of transposable elements in the genomes of Rhus gall aphids.
Collapse
Affiliation(s)
- Aftab Ahmad
- School of Life Science, Shanxi University, Taiyuan 030006, China;
| | - Xu Su
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810016, China;
- School of Life Sciences, Qinghai Normal University, Xining 810008, China
| | - AJ Harris
- South China Botanical Garden, Chinese Academy of Sciences, Tianhe District, Guangzhou 510650, China;
| | - Zhumei Ren
- School of Life Science, Shanxi University, Taiyuan 030006, China;
| |
Collapse
|