1
|
Doi K, Moazamian D, Namiranian B, Statum S, Afsahi AM, Yamamoto T, Cheng KY, Chung CB, Jerban S. The Correlation between the Elastic Modulus of the Achilles Tendon Enthesis and Bone Microstructure in the Calcaneal Crescent. Tomography 2024; 10:1665-1675. [PMID: 39453039 PMCID: PMC11511113 DOI: 10.3390/tomography10100122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND The calcaneal enthesis, an osseous footprint where the Achilles tendon seamlessly integrates with the bone, represents a complex interface crucial for effective force transmission. Bone adapts to mechanical stress and remodels based on the applied internal and external forces. This study explores the relationship between the elasticity of the Achilles tendon enthesis and the bone microstructure in the calcaneal crescent. METHODS In total, 19 calcaneal-enthesis sections, harvested from 10 fresh-frozen human cadaveric foot-ankle specimens (73.8 ± 6.0 years old, seven female), were used in this study. Indentation tests were performed at the enthesis region, and Hayes' elastic modulus was calculated for each specimen. Micro-CT scanning was performed at 50-micron voxel size to assess trabecular bone microstructure within six regions of interest (ROIs) and the cortical bone thickness along the calcaneal crescent. RESULTS Significant Spearman correlations were observed between the enthesis elastic modulus and trabecular bone thickness in the distal entheseal (ROI 3) and proximal plantar (ROI 4) regions (R = 0.786 and 0.518, respectively). CONCLUSION This study highlights the potential impacts of Achilles tendon enthesis on calcaneal bone microstructure, which was pronounced in the distal calcaneal enthesis, suggesting regional differences in load transfer mechanism that require further investigation.
Collapse
Affiliation(s)
- Kenichiro Doi
- Department of Radiology, University of California—San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA (K.Y.C.); (C.B.C.)
- Department of Orthopedic Surgery, Faculty of Medicine, Fukuoka University, Fukuoka 810-0180, Japan
| | - Dina Moazamian
- Department of Radiology, University of California—San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA (K.Y.C.); (C.B.C.)
| | - Behnam Namiranian
- Department of Radiology, University of California—San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA (K.Y.C.); (C.B.C.)
| | - Sheronda Statum
- Department of Radiology, University of California—San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA (K.Y.C.); (C.B.C.)
- Radiology Service, Veterans Affairs San Diego Healthcare System—San Diego, La Jolla, CA 92161, USA
| | - Amir Masoud Afsahi
- Department of Radiology, University of California—San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA (K.Y.C.); (C.B.C.)
| | - Takuaki Yamamoto
- Department of Orthopedic Surgery, Faculty of Medicine, Fukuoka University, Fukuoka 810-0180, Japan
| | - Karen Y. Cheng
- Department of Radiology, University of California—San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA (K.Y.C.); (C.B.C.)
| | - Christine B. Chung
- Department of Radiology, University of California—San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA (K.Y.C.); (C.B.C.)
- Radiology Service, Veterans Affairs San Diego Healthcare System—San Diego, La Jolla, CA 92161, USA
| | - Saeed Jerban
- Department of Radiology, University of California—San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA (K.Y.C.); (C.B.C.)
- Radiology Service, Veterans Affairs San Diego Healthcare System—San Diego, La Jolla, CA 92161, USA
| |
Collapse
|
2
|
Wu J, Wu J, Liu Z, Gong Y, Feng D, Xiang W, Fang S, Chen R, Wu Y, Huang S, Zhou Y, Liu N, Xu H, Zhou S, Liu B, Ni Z. Mesenchymal stem cell-derived extracellular vesicles in joint diseases: Therapeutic effects and underlying mechanisms. J Orthop Translat 2024; 48:53-69. [PMID: 39170747 PMCID: PMC11338158 DOI: 10.1016/j.jot.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/09/2024] [Accepted: 07/08/2024] [Indexed: 08/23/2024] Open
Abstract
Joint diseases greatly impact the daily lives and occupational functioning of patients globally. However, conventional treatments for joint diseases have several limitations, such as unsatisfatory efficacy and side effects, necessitating the exploration of more efficacious therapeutic strategies. Mesenchymal stem cell (MSC)-derived EVs (MSC-EVs) have demonstrated high therapeutic efficacyin tissue repair and regeneration, with low immunogenicity and tumorigenicity. Recent studies have reported that EVs-based therapy has considerable therapeutic effects against joint diseases, including osteoarthritis, tendon and ligament injuries, femoral head osteonecrosis, and rheumatoid arthritis. Herein, we review the therapeutic potential of various types of MSC-EVs in the aforementioned joint diseases, summarise the mechanisms underlying specific biological effects of MSC-EVs, and discuss future prospects for basic research on MSC-EV-based therapeutic modalities and their clinical translation. In general, this review provides an in-depth understanding of the therapeutic effects of MSC-EVs in joint diseases, as well as the underlying mechanisms, which may be beneficial to the clinical translation of MSC-EV-based treatment. The translational potential of this article: MSC-EV-based cell-free therapy can effectively promote regeneration and tissue repair. When used to treat joint diseases, MSC-EVs have demonstrated desirable therapeutic effects in preclinical research. This review may supplement further research on MSC-EV-based treatment of joint diseases and its clinical translation.
Collapse
Affiliation(s)
- Jinhui Wu
- Department of Joint Surgery and Sport Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, China
| | - Jiangyi Wu
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, China
| | - Zheng Liu
- Department of Joint Surgery and Sport Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, China
| | - Yunquan Gong
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Daibo Feng
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Wei Xiang
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Shunzheng Fang
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Ran Chen
- War Trauma Medical Center, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center, Daping Hospital, Army Medical University, Chongqing, 40038, China
| | - Yaran Wu
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Gantaoyan Street, Shapinba District, Chongqing, 400038, China
| | - Shu Huang
- Department of Joint Surgery and Sport Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, China
| | - Yizhao Zhou
- Department of Joint Surgery and Sport Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, China
| | - Ningning Liu
- Department of Laboratory Medicine, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, 450003, China
| | - Hao Xu
- Department of Laboratory Medicine, the Third Affiliated Hospital of Zhengzhou University Zhengzhou, 450003, China
| | - Siru Zhou
- War Trauma Medical Center, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center, Daping Hospital, Army Medical University, Chongqing, 40038, China
| | - Baorong Liu
- Department of Joint Surgery and Sport Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, China
| | - Zhenhong Ni
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| |
Collapse
|
3
|
Liu N, Jiang J, Liu T, Chen H, Jiang N. Compositional, Structural, and Biomechanical Properties of Three Different Soft Tissue-Hard Tissue Insertions: A Comparative Review. ACS Biomater Sci Eng 2024; 10:2659-2679. [PMID: 38697939 DOI: 10.1021/acsbiomaterials.3c01796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Connective tissue attaches to bone across an insertion with spatial gradients in components, microstructure, and biomechanics. Due to regional stress concentrations between two mechanically dissimilar materials, the insertion is vulnerable to mechanical damage during joint movements and difficult to repair completely, which remains a significant clinical challenge. Despite interface stress concentrations, the native insertion physiologically functions as the effective load-transfer device between soft tissue and bone. This review summarizes tendon, ligament, and meniscus insertions cross-sectionally, which is novel in this field. Herein, the similarities and differences between the three kinds of insertions in terms of components, microstructure, and biomechanics are compared in great detail. This review begins with describing the basic components existing in the four zones (original soft tissue, uncalcified fibrocartilage, calcified fibrocartilage, and bone) of each kind of insertion, respectively. It then discusses the microstructure constructed from collagen, glycosaminoglycans (GAGs), minerals and others, which provides key support for the biomechanical properties and affects its physiological functions. Finally, the review continues by describing variations in mechanical properties at the millimeter, micrometer, and nanometer scale, which minimize stress concentrations and control stretch at the insertion. In summary, investigating the contrasts between the three has enlightening significance for future directions of repair strategies of insertion diseases and for bioinspired approaches to effective soft-hard interfaces and other tough and robust materials in medicine and engineering.
Collapse
Affiliation(s)
- Nian Liu
- West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610207, China
| | - Jialing Jiang
- West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610207, China
| | - Tiancheng Liu
- West China Hospital, Sichuan University, Chengdu, Sichuan 610207, China
| | - Haozhe Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Nan Jiang
- State Key Laboratory of Oral Diseases, & National Clinical Research Center for Oral Disease, & West China Hospital of Stomatology and the Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
4
|
Sensini A, Stamati O, Marchiori G, Sancisi N, Gotti C, Giavaresi G, Cristofolini L, Focarete ML, Zucchelli A, Tozzi G. Full-field strain distribution in hierarchical electrospun nanofibrous poly-L(lactic) acid/collagen scaffolds for tendon and ligament regeneration: A multiscale study. Heliyon 2024; 10:e26796. [PMID: 38444492 PMCID: PMC10912460 DOI: 10.1016/j.heliyon.2024.e26796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024] Open
Abstract
Regeneration of injured tendons and ligaments (T/L) is a worldwide need. In this study electrospun hierarchical scaffolds made of a poly-L (lactic) acid/collagen blend were developed reproducing all the multiscale levels of aggregation of these tissues. Scanning electron microscopy, microCT and tensile mechanical tests were carried out, including a multiscale digital volume correlation analysis to measure the full-field strain distribution of electrospun structures. The principal strains (εp1 and εp3) described the pattern of strains caused by the nanofibers rearrangement, while the deviatoric strains (εD) revealed the related internal sliding of nanofibers and bundles. The results of this study confirmed the biomimicry of such electrospun hierarchical scaffolds, paving the way to further tissue engineering and clinical applications.
Collapse
Affiliation(s)
- Alberto Sensini
- Department of Complex Tissue Regeneration and cell Biology-Inspired Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
- Department of Industrial Engineering, Alma Mater Studiorum—Università di Bologna, Bologna, Italy
| | | | - Gregorio Marchiori
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Nicola Sancisi
- Department of Industrial Engineering, Alma Mater Studiorum—Università di Bologna, Bologna, Italy
| | - Carlo Gotti
- Advanced Mechanics and Materials – Interdepartmental Center for Industrial Research (CIRI-MAM), Alma Mater Studiorum—University of Bologna, Bologna, Italy
| | - Gianluca Giavaresi
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Luca Cristofolini
- Department of Complex Tissue Regeneration and cell Biology-Inspired Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
- Health Sciences and Technologies—Interdepartmental Center for Industrial Research (HST-ICIR), Alma Mater Studiorum—Università di Bologna, I-40064, Ozzano dell'Emilia, Bologna, Italy
| | - Maria Letizia Focarete
- Health Sciences and Technologies—Interdepartmental Center for Industrial Research (HST-ICIR), Alma Mater Studiorum—Università di Bologna, I-40064, Ozzano dell'Emilia, Bologna, Italy
- Department of Chemistry 'G. Ciamician' and National Consortium of Materials Science and Technology (INSTM, Bologna RU), Alma Mater Studiorum—Università di Bologna, Bologna, Italy
| | - Andrea Zucchelli
- Department of Industrial Engineering, Alma Mater Studiorum—Università di Bologna, Bologna, Italy
- Advanced Mechanics and Materials – Interdepartmental Center for Industrial Research (CIRI-MAM), Alma Mater Studiorum—University of Bologna, Bologna, Italy
| | - Gianluca Tozzi
- Centre for Advanced Manufacturing and Materials, School of Engineering, University of Greenwich, Chatham Maritime, United Kingdom
| |
Collapse
|
5
|
Camy C, Grünewald T, Lamy E, Roseren F, Caumes M, Fovet T, Brioche T, Genovesio C, Chopard A, Pithioux M, Roffino S. Characterization of the mechanical properties of the mouse Achilles tendon enthesis by microindentation. Effects of unloading and subsequent reloading. Bone Rep 2024; 20:101734. [PMID: 38292933 PMCID: PMC10825371 DOI: 10.1016/j.bonr.2024.101734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 12/14/2023] [Accepted: 01/03/2024] [Indexed: 02/01/2024] Open
Abstract
The fibrocartilaginous tendon enthesis, i.e. the site where a tendon is attached to bone through a fibrocartilaginous tissue, is considered as a functionally graded interface. However, at local scale, a very limited number of studies have characterized micromechanical properties of this transitional tissue. The first goal of this work was to characterize the micromechanical properties of the mineralized part of the healthy Achilles tendon enthesis (ATE) through microindentation testing and to assess the degree of mineralization and of carbonation of mineral crystals by Raman spectroscopy. Since little is known about enthesis biological plasticity, our second objective was to examine the effects of unloading and reloading, using a mouse hindlimb-unloading model, on both the micromechanical properties and the mineral phase of the ATE. Elastic modulus, hardness, degree of mineralization, and degree of carbonation were assessed after 14 days of hindlimb suspension and again after a subsequent 6 days of reloading. The elastic modulus gradually increased along the mineralized part of the ATE from the tidemark to the subchondral bone, with the same trend being found for hardness. Whereas the degree of carbonation did not differ according to zone of measurement, the degree of mineralization increased by >70 % from tidemark to subchondral bone. Thus, the gradient in micromechanical properties is in part explained by a mineralization gradient. A 14-day unloading period did not appear to affect the gradient of micromechanical properties of the ATE, nor the degree of mineralization or carbonation. However, contrary to a short period of unloading, early return to normal mechanical load reduced the micromechanical properties gradient, regardless of carbonate-to-phosphate ratios, likely due to the more homogeneous degree of mineralization. These findings provide valuable data not only for tissue bioengineering, but also for musculoskeletal clinical studies and microgravity studies focusing on long-term space travel by astronauts.
Collapse
Affiliation(s)
- Claire Camy
- Aix Marseille Univ, CNRS, ISM, 13009 Marseille, France
| | - Tilman Grünewald
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| | - Edouard Lamy
- Aix Marseille Univ, CNRS, ISM, 13009 Marseille, France
| | - Flavy Roseren
- Aix Marseille Univ, CNRS, ISM, 13009 Marseille, France
- Aix Marseille Univ, APHM, CNRS, ISM, Mecabio Platform, Department of Orthopaedics and Traumatology, 13009 Marseille, France
| | | | - Théo Fovet
- DMEM, Montpellier University, INRAE, UMR 866, Montpellier, France
| | - Thomas Brioche
- DMEM, Montpellier University, INRAE, UMR 866, Montpellier, France
| | | | - Angèle Chopard
- DMEM, Montpellier University, INRAE, UMR 866, Montpellier, France
| | - Martine Pithioux
- Aix Marseille Univ, CNRS, ISM, 13009 Marseille, France
- Aix Marseille Univ, APHM, CNRS, ISM, Mecabio Platform, Department of Orthopaedics and Traumatology, 13009 Marseille, France
- Aix Marseille Univ, APHM, CNRS, ISM, Sainte-Marguerite Hospital, Institute for Locomotion, Department of Orthopaedics and Traumatology, 13009 Marseille, France
| | | |
Collapse
|
6
|
Saldívar MC, Tay E, Isaakidou A, Moosabeiki V, Fratila-Apachitei LE, Doubrovski EL, Mirzaali MJ, Zadpoor AA. Bioinspired rational design of bi-material 3D printed soft-hard interfaces. Nat Commun 2023; 14:7919. [PMID: 38086804 PMCID: PMC10716482 DOI: 10.1038/s41467-023-43422-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/08/2023] [Indexed: 04/06/2024] Open
Abstract
Durable interfacing of hard and soft materials is a major design challenge caused by the ensuing stress concentrations. In nature, soft-hard interfaces exhibit remarkable mechanical performance, with failures rarely happening at the interface. Here, we mimic the strategies observed in nature to design efficient soft-hard interfaces. We base our geometrical designs on triply periodic minimal surfaces (i.e., Octo, Diamond, and Gyroid), collagen-like triple helices, and randomly distributed particles. A combination of computational simulations and experimental techniques, including uniaxial tensile and quad-lap shear tests, are used to characterize the mechanical performance of the interfaces. Our analyses suggest that smooth interdigitated connections, compliant gradient transitions, and either decreasing or constraining strain concentrations lead to simultaneously strong and tough interfaces. We generate additional interfaces where the abovementioned toughening mechanisms work synergistically to create soft-hard interfaces with strengths approaching the upper achievable limit and enhancing toughness values by 50%, as compared to the control group.
Collapse
Affiliation(s)
- M C Saldívar
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft, The Netherlands
| | - E Tay
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft, The Netherlands
| | - A Isaakidou
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft, The Netherlands
| | - V Moosabeiki
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft, The Netherlands
| | - L E Fratila-Apachitei
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft, The Netherlands
| | - E L Doubrovski
- Faculty of Industrial Design Engineering (IDE), Delft University of Technology (TU Delft), Landbergstraat, 15, 2628 CE, Delft, The Netherlands
| | - M J Mirzaali
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft, The Netherlands.
| | - A A Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft, The Netherlands
| |
Collapse
|
7
|
Tits A, Blouin S, Rummler M, Kaux JF, Drion P, van Lenthe GH, Weinkamer R, Hartmann MA, Ruffoni D. Structural and functional heterogeneity of mineralized fibrocartilage at the Achilles tendon-bone insertion. Acta Biomater 2023; 166:409-418. [PMID: 37088163 DOI: 10.1016/j.actbio.2023.04.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/30/2023] [Accepted: 04/13/2023] [Indexed: 04/25/2023]
Abstract
A demanding task of the musculoskeletal system is the attachment of tendon to bone at entheses. This region often presents a thin layer of fibrocartilage (FC), mineralized close to the bone and unmineralized close to the tendon. Mineralized FC deserves increased attention, owing to its crucial anchoring task and involvement in enthesis pathologies. Here, we analyzed mineralized FC and subchondral bone at the Achilles tendon-bone insertion of rats. This location features enthesis FC anchoring tendon to bone and sustaining tensile loads, and periosteal FC facilitating bone-tendon sliding with accompanying compressive and shear forces. Using a correlative multimodal investigation, we evaluated potential specificities in mineral content, fiber organization and mechanical properties of enthesis and periosteal FC. Both tissues had a lower degree of mineralization than subchondral bone, yet used the available mineral very efficiently: for the same local mineral content, they had higher stiffness and hardness than bone. We found that enthesis FC was characterized by highly aligned mineralized collagen fibers even far away from the attachment region, whereas periosteal FC had a rich variety of fiber arrangements. Except for an initial steep spatial gradient between unmineralized and mineralized FC, local mechanical properties were surprisingly uniform inside enthesis FC while a modulation in stiffness, independent from mineral content, was observed in periosteal FC. We interpreted these different structure-property relationships as a demonstration of the high versatility of FC, providing high strength at the insertion (to resist tensile loading) and a gradual compliance at the periosteal surface (to resist contact stresses). STATEMENT OF SIGNIFICANCE: Mineralized fibrocartilage (FC) at entheses facilitates the integration of tendon in bone, two strongly dissimilar tissues. We focus on the structure-function relationships of two types of mineralized FC, enthesis and periosteal, which have clearly distinct mechanical demands. By investigating them with multiple high-resolution methods in a correlative manner, we demonstrate differences in fiber architecture and mechanical properties between the two tissues, indicative of their mechanical roles. Our results are relevant both from a medical viewpoint, targeting a clinically relevant location, as well as from a material science perspective, identifying FC as high-performance versatile composite.
Collapse
Affiliation(s)
- Alexandra Tits
- Mechanics of Biological and Bioinspired Materials Laboratory, Department of Aerospace and Mechanical Engineering, University of Liège, Liège, Belgium.
| | - Stéphane Blouin
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria
| | - Maximilian Rummler
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Jean-François Kaux
- Department of Physical Medicine and Sports Traumatology, University of Liège and University Hospital of Liège, Liège, Belgium
| | - Pierre Drion
- Experimental Surgery unit, GIGA & Credec, University of Liège, Liège, Belgium
| | | | - Richard Weinkamer
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Markus A Hartmann
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria
| | - Davide Ruffoni
- Mechanics of Biological and Bioinspired Materials Laboratory, Department of Aerospace and Mechanical Engineering, University of Liège, Liège, Belgium.
| |
Collapse
|
8
|
Buss DJ, Rechav K, Reznikov N, McKee MD. Mineral tessellation in mouse enthesis fibrocartilage, Achilles tendon, and Hyp calcifying enthesopathy: A shared 3D mineralization pattern. Bone 2023:116818. [PMID: 37295663 DOI: 10.1016/j.bone.2023.116818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/17/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
The hallmark of enthesis architecture is the 3D compositional and structural gradient encompassing four tissue zones - tendon/ligament, uncalcified fibrocartilage, calcified fibrocartilage and bone. This functional gradient accommodates the large stiffness differential between calcified bone and uncalcified tendon/ligament. Here we analyze in 3D the organization of the mouse Achilles enthesis and mineralizing Achilles tendon in comparison to lamellar bone. We use correlative, multiscale high-resolution volume imaging methods including μCT with submicrometer resolution and FIB-SEM tomography (both with deep learning-based image segmentation), and TEM and SEM imaging, to describe ultrastructural features of physiologic, age-related and aberrant mineral patterning. We applied these approaches to murine wildtype (WT) Achilles enthesis tissues to describe in normal calcifying fibrocartilage a crossfibrillar mineral tessellation pattern similar to that observed in lamellar bone, but with greater variance in mineral tesselle morphology and size. We also examined Achilles enthesis structure in Hyp mice, a murine model for the inherited osteomalacic disease X-linked hypophosphatemia (XLH) with calcifying enthesopathy. In Achilles enthesis fibrocartilage of Hyp mice, we show defective crossfibrillar mineral tessellation similar to that which occurs in Hyp lamellar bone. At the cellular level in fibrocartilage, unlike in bone where enlarged osteocyte mineral lacunae are found as peri-osteocytic lesions, mineral lacunar volumes for fibrochondrocytes did not differ between WT and Hyp mice. While both WT and Hyp aged mice demonstrate Achilles tendon midsubstance ectopic mineralization, a consistently defective mineralization pattern was observed in Hyp mice. Strong immunostaining for osteopontin was observed at all mineralization sites examined in both WT and Hyp mice. Taken together, this new 3D ultrastructural information describes details of common mineralization trajectories for enthesis, tendon and bone, which in Hyp/XLH are defective.
Collapse
Affiliation(s)
- Daniel J Buss
- Department of Anatomy and Cell Biology, School of Biomedical Sciences, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Katya Rechav
- Electron Microscopy Unit, Weizmann Institute of Science, Rehovot, Israel
| | - Natalie Reznikov
- Department of Anatomy and Cell Biology, School of Biomedical Sciences, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada; Department of Bioengineering, Faculty of Engineering, McGill University, Montreal, Quebec, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Marc D McKee
- Department of Anatomy and Cell Biology, School of Biomedical Sciences, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
9
|
Gögele C, Vogt J, Hahn J, Breier A, Bernhardt R, Meyer M, Schröpfer M, Schäfer-Eckart K, Schulze-Tanzil G. Co-Culture of Mesenchymal Stem Cells and Ligamentocytes on Triphasic Embroidered Poly(L-lactide-co-ε-caprolactone) and Polylactic Acid Scaffolds for Anterior Cruciate Ligament Enthesis Tissue Engineering. Int J Mol Sci 2023; 24:ijms24076714. [PMID: 37047686 PMCID: PMC10095212 DOI: 10.3390/ijms24076714] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/07/2023] Open
Abstract
Successful anterior cruciate ligament (ACL) reconstructions strive for a firm bone-ligament integration. With the aim to establish an enthesis-like construct, embroidered functionalized scaffolds were colonized with spheroids of osteogenically differentiated human mesenchymal stem cells (hMSCs) and lapine (l) ACL fibroblasts in this study. These triphasic poly(L-lactide-co-ε-caprolactone) and polylactic acid (P(LA-CL)/PLA) scaffolds with a bone-, a fibrocartilage transition- and a ligament zone were colonized with spheroids directly after assembly (DC) or with 14-day pre-cultured lACL fibroblast and 14-day osteogenically differentiated hMSCs spheroids (=longer pre-cultivation, LC). The scaffolds with co-cultures were cultured for 14 days. Cell vitality, DNA and sulfated glycosaminoglycan (sGAG) contents were determined. The relative gene expressions of collagen types I and X, Mohawk, Tenascin C and runt-related protein (RUNX) 2 were analyzed. Compared to the lACL spheroids, those with hMSCs adhered more rapidly. Vimentin and collagen type I immunoreactivity were mainly detected in the hMSCs colonizing the bone zone. The DNA content was higher in the DC than in LC whereas the sGAG content was higher in LC. The gene expression of ECM components and transcription factors depended on cell type and pre-culturing condition. Zonal colonization of triphasic scaffolds using spheroids is possible, offering a novel approach for enthesis tissue engineering.
Collapse
Affiliation(s)
- Clemens Gögele
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany
| | - Julia Vogt
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany
| | - Judith Hahn
- Department Materials Engineering, Institute of Polymers Materials, Leibniz-Institut für Polymerforschung Dresden e.V. (IPF), Hohe Straße 6, 01069 Dresden, Germany
| | - Annette Breier
- Department Materials Engineering, Institute of Polymers Materials, Leibniz-Institut für Polymerforschung Dresden e.V. (IPF), Hohe Straße 6, 01069 Dresden, Germany
| | - Ricardo Bernhardt
- Department Materials Engineering, Institute of Polymers Materials, Leibniz-Institut für Polymerforschung Dresden e.V. (IPF), Hohe Straße 6, 01069 Dresden, Germany
| | - Michael Meyer
- FILK Freiberg Institute gGmbH (FILK), Meißner Ring 1-5, 09599 Freiberg, Germany
| | - Michaela Schröpfer
- FILK Freiberg Institute gGmbH (FILK), Meißner Ring 1-5, 09599 Freiberg, Germany
| | - Kerstin Schäfer-Eckart
- Bone Marrow Transplantation Unit, Medizinische Klinik 5, Klinikum Nürnberg, 90419 Nuremberg, Germany
| | - Gundula Schulze-Tanzil
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany
| |
Collapse
|
10
|
Shiroud Heidari B, Ruan R, Vahabli E, Chen P, De-Juan-Pardo EM, Zheng M, Doyle B. Natural, synthetic and commercially-available biopolymers used to regenerate tendons and ligaments. Bioact Mater 2023; 19:179-197. [PMID: 35510172 PMCID: PMC9034322 DOI: 10.1016/j.bioactmat.2022.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/15/2022] [Accepted: 04/04/2022] [Indexed: 12/26/2022] Open
Abstract
Tendon and ligament (TL) injuries affect millions of people annually. Biopolymers play a significant role in TL tissue repair, whether the treatment relies on tissue engineering strategies or using artificial tendon grafts. The biopolymer governs the mechanical properties, biocompatibility, degradation, and fabrication method of the TL scaffold. Many natural, synthetic and hybrid biopolymers have been studied in TL regeneration, often combined with therapeutic agents and minerals to engineer novel scaffold systems. However, most of the advanced biopolymers have not advanced to clinical use yet. Here, we aim to review recent biopolymers and discuss their features for TL tissue engineering. After introducing the properties of the native tissue, we discuss different types of natural, synthetic and hybrid biopolymers used in TL tissue engineering. Then, we review biopolymers used in commercial absorbable and non-absorbable TL grafts. Finally, we explain the challenges and future directions for the development of novel biopolymers in TL regenerative treatment.
Collapse
Affiliation(s)
- Behzad Shiroud Heidari
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and the UWA Centre for Medical Research, The University of Western Australia, Nedlands, 6009, Australia
- School of Engineering, The University of Western Australia, Perth, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
| | - Rui Ruan
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
- Division of Surgery (Orthopaedics), Medical School, The University of Western Australia, Perth, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, 6009, Australia
| | - Ebrahim Vahabli
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and the UWA Centre for Medical Research, The University of Western Australia, Nedlands, 6009, Australia
- School of Engineering, The University of Western Australia, Perth, Australia
| | - Peilin Chen
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
- Division of Surgery (Orthopaedics), Medical School, The University of Western Australia, Perth, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, 6009, Australia
| | - Elena M. De-Juan-Pardo
- School of Engineering, The University of Western Australia, Perth, Australia
- T3mPLATE, Harry Perkins Institute of Medical Research, QEII Medical Centre and the UWA Centre for Medical Research, The University of Western Australia, Nedlands, 6009, Australia
- Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Minghao Zheng
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
- Division of Surgery (Orthopaedics), Medical School, The University of Western Australia, Perth, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, 6009, Australia
| | - Barry Doyle
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and the UWA Centre for Medical Research, The University of Western Australia, Nedlands, 6009, Australia
- School of Engineering, The University of Western Australia, Perth, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
- BHF Centre for Cardiovascular Science, The University of Edinburgh, UK
| |
Collapse
|