1
|
Qin L, Li B, Wang S, Tang Y, Fahira A, Kou Y, Li T, Hu Z, Huang Z. Construction of an immune-related prognostic signature and lncRNA-miRNA-mRNA ceRNA network in acute myeloid leukemia. J Leukoc Biol 2024; 116:146-165. [PMID: 38393298 DOI: 10.1093/jleuko/qiae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
The progression of acute myeloid leukemia (AML) is influenced by the immune microenvironment in the bone marrow and dysregulated intracellular competing endogenous RNA (ceRNA) networks. Our study utilized data from UCSC Xena, The Cancer Genome Atlas Program, the Gene Expression Omnibus, and the Immunology Database and Analysis Portal. Using Cox regression analysis, we identified an immune-related prognostic signature. Genomic analysis of prognostic messenger RNA (mRNA) was conducted through Gene Set Cancer Analysis (GSCA), and a prognostic ceRNA network was constructed using the Encyclopedia of RNA Interactomes. Correlations between signature mRNAs and immune cell infiltration, checkpoints, and drug sensitivity were assessed using R software, gene expression profiling interactive analysis (GEPIA), and CellMiner, respectively. Adhering to the ceRNA hypothesis, we established a potential long noncoding RNA (lncRNA)/microRNA (miRNA)/mRNA regulatory axis. Our findings pinpointed 9 immune-related prognostic mRNAs (KIR2DL1, CSRP1, APOBEC3G, CKLF, PLXNC1, PNOC, ANGPT1, IL1R2, and IL3RA). GSCA analysis revealed the impact of copy number variations and methylation on AML. The ceRNA network comprised 14 prognostic differentially expressed lncRNAs (DE-lncRNAs), 6 prognostic DE-miRNAs, and 3 prognostic immune-related DE-mRNAs. Correlation analyses linked these mRNAs' expression to 22 immune cell types and 6 immune checkpoints, with potential sensitivity to 27 antitumor drugs. Finally, we identified a potential LINC00963/hsa-miR-431-5p/CSRP1 axis. This study offers innovative insights for AML diagnosis and treatment through a novel immune-related signature and ceRNA axis. Identified novel biomarkers, including 2 mRNAs (CKLF, PNOC), 1 miRNA (hsa-miR-323a-3p), and 10 lncRNAs (SNHG25, LINC01857, AL390728.6, AC127024.5, Z83843.1, AP002884.1, AC007038.1, AC112512, AC020659.1, AC005921.3) present promising candidates as potential targets for precision medicine, contributing to the ongoing advancements in the field.
Collapse
Affiliation(s)
- Ling Qin
- Department of Hematology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, No. 24 Jinghua Road, Jianxi District, Luoyang 471003, China
| | - Boya Li
- Department of Hematology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, No. 24 Jinghua Road, Jianxi District, Luoyang 471003, China
| | - Shijie Wang
- Department of Hematology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, No. 24 Jinghua Road, Jianxi District, Luoyang 471003, China
| | - Yulai Tang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory of Computer-Aided Drug Design of Dongguan City, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, No. 1 Xincheng Road, Songshan Lake District, Dongguan 523808, Guangdong, China
| | - Aamir Fahira
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory of Computer-Aided Drug Design of Dongguan City, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, No. 1 Xincheng Road, Songshan Lake District, Dongguan 523808, Guangdong, China
| | - Yanqi Kou
- Department of Hematology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, No. 24 Jinghua Road, Jianxi District, Luoyang 471003, China
| | - Tong Li
- Department of Hematology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, No. 24 Jinghua Road, Jianxi District, Luoyang 471003, China
| | - Zhigang Hu
- School of Medical Technology and Engineering, Henan University of Science and Technology, No.263 Kaiyuan Avenue, Luolong District, Luoyang 471000, China
| | - Zunnan Huang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory of Computer-Aided Drug Design of Dongguan City, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, No. 1 Xincheng Road, Songshan Lake District, Dongguan 523808, Guangdong, China
| |
Collapse
|
2
|
Zhang M, Xu T, Tong D, Yu X, Liu B, Jiang L, Liu K. MiR-136-5p in cancer: Roles, mechanisms, and chemotherapy resistance. Gene 2024; 909:148265. [PMID: 38346459 DOI: 10.1016/j.gene.2024.148265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/25/2024] [Accepted: 02/06/2024] [Indexed: 02/29/2024]
Abstract
MicroRNAs (miRNAs) have emerged as important regulators of gene expression, and the deregulation of their activity has been linked to the onset and progression of a variety of human malignancies. Among these miRNAs, miR-136-5p has attracted significant attention due to its diverse roles in cancer biology. Mostly, miR-136-5p is downregulated in malignancies. It could inhibit viability, proliferation, migration, invasion and promote apoptosis of tumor cells. This review article provides a comprehensive overview of the current understanding of miR-136-5p in different sorts of human cancers: genital tumors, head and neck tumors, tumors from the digestive and urinary systems, skin cancers, neurologic tumors, pulmonary neoplasms and other cancers by discussing its molecular mechanisms, functional roles, and impact in chemotherapies. In conclusion, miR-136-5p could be a promising new biomarker and potential clinical therapeutic target.
Collapse
Affiliation(s)
- Manlin Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tongtong Xu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Deming Tong
- Department of General Surgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Xiaodan Yu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Boya Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lili Jiang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Kuiran Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
3
|
Lobo-Alves SC, Oliveira LAD, Kretzschmar GC, Valengo AE, Rosati R. Long noncoding RNA expression in acute lymphoblastic leukemia: A systematic review. Crit Rev Oncol Hematol 2024; 196:104290. [PMID: 38341118 DOI: 10.1016/j.critrevonc.2024.104290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/03/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024] Open
Abstract
Long noncoding RNAs (lncRNAs), as gene expression modulators, are potential players in Acute Lymphoblastic Leukemia (ALL) pathogenesis. We systematically explored current literature on lncRNA expression in ALL to identify lncRNAs consistently reported as differentially expressed (DE) either in ALL versus controls or between ALL subtypes. By comparing articles that provided global expression data for DE lncRNAs in the ETV6::RUNX1-positive ALL subtype, we identified four DE lncRNAs in three independent studies (two versus other subtypes and one versus controls), showing concordant expression of LINC01013, CRNDE and lnc-KLF7-1. Additionally, LINC01503 was consistently downregulated on ALL versus controls. Within RT-qPCR studies, twelve lncRNA were DE in more than one source. Thus, several lncRNAs were supported as DE in ALL by multiple sources, highlighting their potential role as candidate biomarkers or therapeutic targets. Finally, as lncRNA annotation is rapidly expanding, standardization of reporting and nomenclature is urgently needed to improve data verifiability and compilation.
Collapse
Affiliation(s)
- Sara Cristina Lobo-Alves
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632 - Água Verde, Curitiba, PR 80250-060, Brazil; Faculdades Pequeno Príncipe, Av Iguaçu, 333, Rebouças, Curitiba, PR 80230-020, Brazil; National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology - INCT BioOncoPed, Porto Alegre, RS 90035-003, Brazil.
| | - Liana Alves de Oliveira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632 - Água Verde, Curitiba, PR 80250-060, Brazil; National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology - INCT BioOncoPed, Porto Alegre, RS 90035-003, Brazil.
| | - Gabriela Canalli Kretzschmar
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632 - Água Verde, Curitiba, PR 80250-060, Brazil; Faculdades Pequeno Príncipe, Av Iguaçu, 333, Rebouças, Curitiba, PR 80230-020, Brazil; National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology - INCT BioOncoPed, Porto Alegre, RS 90035-003, Brazil.
| | - Andressa Eloisa Valengo
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632 - Água Verde, Curitiba, PR 80250-060, Brazil; Faculdades Pequeno Príncipe, Av Iguaçu, 333, Rebouças, Curitiba, PR 80230-020, Brazil
| | - Roberto Rosati
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632 - Água Verde, Curitiba, PR 80250-060, Brazil; Faculdades Pequeno Príncipe, Av Iguaçu, 333, Rebouças, Curitiba, PR 80230-020, Brazil; National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology - INCT BioOncoPed, Porto Alegre, RS 90035-003, Brazil.
| |
Collapse
|
4
|
Sharma P, Kaur P, Bhatia P, Trehan A, Sreedharanunni S, Singh M. Novel lncRNAs LINC01221, RP11-472G21.2 and CRNDE are markers of differential expression in pediatric patients with T cell acute lymphoblastic leukemia. Cancer Cell Int 2024; 24:65. [PMID: 38336706 PMCID: PMC10858595 DOI: 10.1186/s12935-024-03255-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
INTRODUCTION Pediatric T-cell acute lymphoblastic leukemia (T-ALL) poses significant challenges due to its aggressive nature and resistance to standard treatments. Long non-coding RNAs (lncRNAs) have emerged as potential biomarkers and therapeutic targets in leukemia. This study aims to characterize the lncRNA landscape in pediatric T-ALL, identify specific lncRNAs signatures, and assess their clinical relevance. METHODS RNA sequencing was performed on T-ALL patient and control samples. Differential expression analysis identified dysregulated lncRNAs and mRNAs. Functional enrichment analysis revealed potential roles of these lncRNAs in cancer pathogenesis. Validation of candidate lncRNAs was conducted using real-time PCR. Clinical correlations were assessed, including associations with patients' clinical characteristics and survival outcomes. RESULTS Analysis identified 674 dysregulated lncRNAs in pediatric T-ALL, with LINC01221 and CRNDE showing the most interactions in cancer progression pathways. Functional enrichment indicated involvement in apoptosis, survival, proliferation, and metastasis. Top 10 lncRNAs based on adjusted p value < 0.05 and Fold Change > 2 were selected for validation. Seven lncRNAs LINC01221, PCAT18, LINC00977, RP11-620J15.3, RP11-472G21.2, CTD-2291D10.4, and CRNDE showed correlation with RNA sequencing data. RP11-472G21.2 and CTD-2291D10.4 were highly expressed in T-ALL patients, with RP11-620J15.3 correlating significantly with better overall survival (p = 0.0007) at a median follow up of 32 months. The identified lncRNAs were further analysed in B-ALL patients. Distinct lncRNAs signatures were noted, distinguishing T-ALL from B-ALL and healthy controls, with lineage-specific overexpression of LINC01221 (p < 0.0001), RP11-472G21.2 (p < 0.001) and CRNDE (p = 0.04) in T-ALL. CONCLUSION This study provides insights into the lncRNA landscape of pediatric T-ALL, offering potential diagnostic and prognostic markers. RP11-620J15.3 emerges as a promising prognostic marker, and distinct lncRNAs signatures may aid in the differentiation of T-ALL subtypes. Further research with larger cohorts is warranted to validate these findings and advance personalized treatment strategies for pediatric T-ALL patients.
Collapse
Affiliation(s)
- Pankaj Sharma
- Hematology-Oncology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Parminder Kaur
- Hematology-Oncology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Prateek Bhatia
- Hematology-Oncology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Amita Trehan
- Hematology-Oncology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sreejesh Sreedharanunni
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Minu Singh
- Hematology-Oncology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
5
|
Tao Y, Wei L, Shiba N, Tomizawa D, Hayashi Y, Ogawa S, Chen L, You H. Development and validation of a promising 5-gene prognostic model for pediatric acute myeloid leukemia. MOLECULAR BIOMEDICINE 2024; 5:1. [PMID: 38163849 PMCID: PMC10758381 DOI: 10.1186/s43556-023-00162-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 12/03/2023] [Indexed: 01/03/2024] Open
Abstract
Risk classification in pediatric acute myeloid leukemia (P-AML) is crucial for personalizing treatments. Thus, we aimed to establish a risk-stratification tool for P-AML patients and eventually guide individual treatment. A total of 256 P-AML patients with accredited mRNA-seq data from the TARGET database were divided into training and internal validation datasets. A gene-expression-based prognostic score was constructed for overall survival (OS), by using univariate Cox analysis, LASSO regression analysis, Kaplan-Meier (K-M) survival, and multivariate Cox analysis. A P-AML-5G prognostic score bioinformatically derived from expression levels of 5 genes (ZNF775, RNFT1, CRNDE, COL23A1, and TTC38), clustered P-AML patients in training dataset into high-risk group (above optimal cut-off) with shorter OS, and low-risk group (below optimal cut-off) with longer OS (p < 0.0001). Meanwhile, similar results were obtained in internal validation dataset (p = 0.005), combination dataset (p < 0.001), two treatment sub-groups (p < 0.05), intermediate-risk group defined with the Children's Oncology Group (COG) (p < 0.05) and an external Japanese P-AML dataset (p = 0.005). The model was further validated in the COG study AAML1031(p = 0.001), and based on transcriptomic analysis of 943 pediatric patients and 70 normal bone marrow samples from this dataset, two genes in the model demonstrated significant differential expression between the groups [all log2(foldchange) > 3, p < 0.001]. Independent of other prognostic factors, the P-AML-5G groups presented the highest concordance-index values in training dataset, chemo-therapy only treatment subgroups of the training and internal validation datasets, and whole genome-sequencing subgroup of the combined dataset, outperforming two Children's Oncology Group (COG) risk stratification systems, 2022 European LeukemiaNet (ELN) risk classification tool and two leukemic stem cell expression-based models. The 5-gene prognostic model generated by a single assay can further refine the current COG risk stratification system that relies on numerous tests and may have the potential for the risk judgment and identification of the high-risk pediatric AML patients receiving chemo-therapy only treatment.
Collapse
Affiliation(s)
- Yu Tao
- Laboratory for Excellence in Systems Biomedicine of Pediatric Oncology, Department of Pediatric Hematology and Oncology, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Li Wei
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing, China
- Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Norio Shiba
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Daisuke Tomizawa
- Division of Leukemia and Lymphoma, Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Yasuhide Hayashi
- Department of Hematology/Oncology, Gunma and Institute of Physiology and Medicine, Gunma Children's Medical Center, Jobu University, Gunma, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institute, 17177, Stockholm, Sweden
| | - Li Chen
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Hua You
- Laboratory for Excellence in Systems Biomedicine of Pediatric Oncology, Department of Pediatric Hematology and Oncology, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
6
|
Zhou Q, Shu X, Chai Y, Liu W, Li Z, Xi Y. The non-coding competing endogenous RNAs in acute myeloid leukemia: biological and clinical implications. Biomed Pharmacother 2023; 163:114807. [PMID: 37150037 DOI: 10.1016/j.biopha.2023.114807] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/09/2023] Open
Abstract
Acute myeloid leukemia (AML) is a hematologic carcinoma that has seen a considerable improvement in patient prognosis because of genetic diagnostics and molecularly-targeted therapies. Nevertheless, recurrence and drug resistance remain significant obstacles to leukemia treatment. It is critical to investigate the underlying molecular mechanisms and find solutions. Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), circular RNAs, long non-coding RNAs, and pseudogenes, have been found to be crucial components in driving cancer. The competing endogenous RNA (ceRNA) mechanism has expanded the complexity of miRNA-mediated gene regulation. A great deal of literature has shown that ncRNAs are essential to the biological functions of the ceRNA network (ceRNET). NcRNAs can compete for the same miRNA response elements to influence miRNA-target RNA interactions. Recent evidence suggests that ceRNA might be a potential biomarker and therapeutic strategy. So far, however, there have been no comprehensive studies on ceRNET about AML. What is not yet clear is the clinical application of ceRNA in AML. This study attempts to summarize the development of research on the related ceRNAs in AML and the roles of ncRNAs in ceRNET. We also briefly describe the mechanisms of ceRNA and ceRNET. What's more significant is that we explore the clinical value of ceRNAs to provide accurate diagnostic and prognostic biomarkers as well as therapeutic targets. Finally, limitations and prospects are considered.
Collapse
Affiliation(s)
- Qi Zhou
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Xiaojun Shu
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China; Department of Vascular Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yihong Chai
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Wenling Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Zijian Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China; Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yaming Xi
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China; Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China.
| |
Collapse
|
7
|
Ghafouri-Fard S, Safarzadeh A, Hussen BM, Taheri M, Mokhtari M. Contribution of CRNDE lncRNA in the development of cancer and the underlying mechanisms. Pathol Res Pract 2023; 244:154387. [PMID: 36893710 DOI: 10.1016/j.prp.2023.154387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/19/2023] [Accepted: 02/23/2023] [Indexed: 03/09/2023]
Abstract
Colorectal Neoplasia Differentially Expressed (CRNDE) is an lncRNA with crucial roles in cancer development. It is located on chromosome 16 on the opposite strand to the adjacent IRX5 gene, implying the presence of a shared bidirectional promoter for these two genes. Expression of CRNDE has been assessed in a diverse array of hematological malignancies and solid tumors, representing its potential as a therapeutic target in these conditions. This lncRNA has a regulatory effect on activity of several pathways and axes that are involved in the regulation of cell apoptosis, immune responses and tumorigenesis. The current review is an updated review about the role of CRNDE in the development of cancers.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Safarzadeh
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Majid Mokhtari
- Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Enhanced MCM5 Level Predicts Bad Prognosis in Acute Myeloid Leukemia. Mol Biotechnol 2022:10.1007/s12033-022-00623-9. [DOI: 10.1007/s12033-022-00623-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/26/2022] [Indexed: 12/12/2022]
Abstract
AbstractAcute myeloid leukemia (AML) is a fatal heterogeneous hematologic malignancy. There is an urgent need to identify potential biomarkers to better classify sufferers with bad outcomes that might need more advanced treatment. The objective of this study was to investigate prognostic indicators that predict the outcome of sufferers with AML. The datasets of AML sufferers including mRNA sequencing data and clinical information were acquired from GEO datasets (GSE38865) and TCGA datasets. Kaplan–Meier curves and Cox regression analysis to screen genes correlated to survival. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses biological process analysis were utilized in verifying the function of various genes. Sufferers with elevated MCM5 level exhibited a worse prognosis, according to the survival analysis. It was indicated through multivariate and univariate analysis that MCM5 level was an independent adverse prognostic element for over survival in AML sufferers based on GEO and TCGA datasets. Meanwhile, MCM5 level in AML samples was higher than in normal samples. Additionally, it was indicated through PPI network and functional enrichment analyses that through accelerating cell cycle and DNA replication, MCM5 promoted AML progression. In conclusions, MCM5 level was an independent poor prognostic element in AML sufferers based on GEO and TCGA datasets. This is the first time that MCM5 is reported to be a biomarker of poor prognosis in AML.
Collapse
|
9
|
Gasic V, Karan-Djurasevic T, Pavlovic D, Zukic B, Pavlovic S, Tosic N. Diagnostic and Therapeutic Implications of Long Non-Coding RNAs in Leukemia. Life (Basel) 2022; 12:1770. [PMID: 36362925 PMCID: PMC9695865 DOI: 10.3390/life12111770] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 08/26/2023] Open
Abstract
Leukemia is a heterogenous group of hematological malignancies categorized in four main types (acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), chronic myeloid leukemia (CML) and chronic lymphocytic leukemia (CLL). Several cytogenetic and molecular markers have become a part of routine analysis for leukemia patients. These markers have been used in diagnosis, risk-stratification and targeted therapy application. Recent studies have indicated that numerous regulatory RNAs, such as long non-coding RNAs (lncRNAs), have a role in tumor initiation and progression. When it comes to leukemia, data for lncRNA involvement in its etiology, progression, diagnosis, treatment and prognosis is limited. The aim of this review is to summarize research data on lncRNAs in different types of leukemia, on their expression pattern, their role in leukemic transformation and disease progression. The usefulness of this information in the clinical setting, i.e., for diagnostic and prognostic purposes, will be emphasized. Finally, how particular lncRNAs could be used as potential targets for the application of targeted therapy will be considered.
Collapse
Affiliation(s)
- Vladimir Gasic
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia
| | | | | | | | | | | |
Collapse
|
10
|
Yang LR, Lin ZY, Hao QG, Li TT, Zhu Y, Teng ZW, Zhang J. The prognosis biomarkers based on m6A-related lncRNAs for myeloid leukemia patients. Cancer Cell Int 2022; 22:10. [PMID: 34996458 PMCID: PMC8739709 DOI: 10.1186/s12935-021-02428-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/23/2021] [Indexed: 12/15/2022] Open
Abstract
Background Chronic myeloid leukemia (CML) and acute myeloid leukemia (AML) are two common malignant disorders in leukemia. Although potent drugs are emerging, CML and AML may still relapse after the drug treatment is stopped. N6-methyladenosine (m6A) and lncRNAs play certain roles in the occurrence and development of tumors, but m6A-modified LncRNAs in ML remain to be further investigated. Methods In this study, we extracted and analyzed the TCGA gene expression profile of 151 ML patients and the clinical data. On this basis, we then evaluated the immune infiltration capacity of ML and LASSO-penalized Cox analysis was applied to construct the prognostic model based on m6A related lncRNAs to verify the prognostic risk in clinical features of ML. Quantitative reverse transcription PCR was used to detect the expression level of LncRNA in in ML cell lines K562, MOLM13 and acute monocytic leukemia cell line THP-1. Results We found 70 m6A-related lncRNAs that were related to prognosis, and speculated that the content of stromal cells and immune cells would correlate with the survival of patients with ML. Next, Prognostic risk model of m6A-related lncRNAs was validated to have excellent consistency in clinical features of ML. Finally, we verified the expression levels of CRNDE, CHROMR and NARF-IT1 in ML cell lines K562, MOLM13 and acute monocytic leukemia cell line THP-1, which were significant. Conclusions The research provides clues for the prognosis prediction of ML patients by using the m6A-related lncRNAs model we have created, and clarifies the accuracy and authenticity of it. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02428-3.
Collapse
Affiliation(s)
- Li-Rong Yang
- Department of Oncology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, 82 Qinglong Road, Chengdu, 610031, Sichuan, China
| | - Zhu-Ying Lin
- Kunming Medical University, Kunming, 650000, Yunnan, China
| | - Qing-Gang Hao
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, 650000, China
| | - Tian-Tian Li
- Kunming Medical University, Kunming, 650000, Yunnan, China
| | - Yun Zhu
- The Sixth Affiliated Hospital of Kunming Medical University, The People's Hospital of Yuxi City, Yunnan, 653100, Yuxi, China
| | - Zhao-Wei Teng
- Yunnan Key Laboratory of Digital Orthopedics, Department of Orthopedic, The First People's Hospital of Yunnan Province, Kunming, 650000, Yunnan, China.
| | - Jun Zhang
- Department of Oncology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, 82 Qinglong Road, Chengdu, 610031, Sichuan, China.
| |
Collapse
|
11
|
Tian X, Yuan Y, Wang L. LncRNA colorectal neoplasia differentially expressed exacerbates the impairments in learning and memory induced by isoflurane. Hum Exp Toxicol 2022; 41:9603271221132152. [DOI: 10.1177/09603271221132152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background This observation aimed to investigate the effect of colorectal neoplasia differentially expressed (CRNDE) targeted miR-212-5p on cognitive impairment induced by isoflurane (ISO) anesthesia in rats. Methods The cognitive function of rats was measured by Morris water maze test. QRT-PCR detection of CRNDE and miR-212-5p expression levels in rats in each group. Double luciferase was used to verify the targeting relationship between miR-212-5p and CRNDE, and commercial kits were used to detect the level of inflammatory cytokines in hippocampus. Results The concentration of CRNDE was enhanced in rats treated by ISO anesthetic. The neurological severity score was elevated, the escape latency of rats was prolonged, the stay time in the quadrant of the platform, and the number of times crossing the platform decreased in the ISO group. The above indexes of rats in ISO + si-CRNDE were improved. MiR-212-5p is a mediator in the management of CRNDE on cognition and inflammation. Conclusion CRNDE led to the deterioration of impairment on cognition induced by ISO through suppressing miR-212-5p expression and promoting neuroinflammation.
Collapse
Affiliation(s)
- Xiang Tian
- Department of Anesthesiology, Minda Hospital of Hubei Minzu University, Enshi, China
| | - Yawei Yuan
- Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Long Wang
- Department of Pain Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|