1
|
Vorobyeva NE, Krasnov AN, Erokhin M, Chetverina D, Mazina M. Su(Hw) interacts with Combgap to establish long-range chromatin contacts. Epigenetics Chromatin 2024; 17:17. [PMID: 38773468 PMCID: PMC11106861 DOI: 10.1186/s13072-024-00541-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/16/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Insulator-binding proteins (IBPs) play a critical role in genome architecture by forming and maintaining contact domains. While the involvement of several IBPs in organising chromatin architecture in Drosophila has been described, the specific contribution of the Suppressor of Hairy wings (Su(Hw)) insulator-binding protein to genome topology remains unclear. RESULTS In this study, we provide evidence for the existence of long-range interactions between chromatin bound Su(Hw) and Combgap, which was first characterised as Polycomb response elements binding protein. Loss of Su(Hw) binding to chromatin results in the disappearance of Su(Hw)-Combgap long-range interactions and in a decrease in spatial self-interactions among a subset of Su(Hw)-bound genome sites. Our findings suggest that Su(Hw)-Combgap long-range interactions are associated with active chromatin rather than Polycomb-directed repression. Furthermore, we observe that the majority of transcription start sites that are down-regulated upon loss of Su(Hw) binding to chromatin are located within 2 kb of Combgap peaks and exhibit Su(Hw)-dependent changes in Combgap and transcriptional regulators' binding. CONCLUSIONS This study demonstrates that Su(Hw) insulator binding protein can form long-range interactions with Combgap, Polycomb response elements binding protein, and that these interactions are associated with active chromatin factors rather than with Polycomb dependent repression.
Collapse
Affiliation(s)
- Nadezhda E Vorobyeva
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Alexey N Krasnov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Maksim Erokhin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Darya Chetverina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Marina Mazina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| |
Collapse
|
2
|
Berg C, Sieber M, Sun J. Finishing the egg. Genetics 2024; 226:iyad183. [PMID: 38000906 PMCID: PMC10763546 DOI: 10.1093/genetics/iyad183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/27/2023] [Indexed: 11/26/2023] Open
Abstract
Gamete development is a fundamental process that is highly conserved from early eukaryotes to mammals. As germ cells develop, they must coordinate a dynamic series of cellular processes that support growth, cell specification, patterning, the loading of maternal factors (RNAs, proteins, and nutrients), differentiation of structures to enable fertilization and ensure embryonic survival, and other processes that make a functional oocyte. To achieve these goals, germ cells integrate a complex milieu of environmental and developmental signals to produce fertilizable eggs. Over the past 50 years, Drosophila oogenesis has risen to the forefront as a system to interrogate the sophisticated mechanisms that drive oocyte development. Studies in Drosophila have defined mechanisms in germ cells that control meiosis, protect genome integrity, facilitate mRNA trafficking, and support the maternal loading of nutrients. Work in this system has provided key insights into the mechanisms that establish egg chamber polarity and patterning as well as the mechanisms that drive ovulation and egg activation. Using the power of Drosophila genetics, the field has begun to define the molecular mechanisms that coordinate environmental stresses and nutrient availability with oocyte development. Importantly, the majority of these reproductive mechanisms are highly conserved throughout evolution, and many play critical roles in the development of somatic tissues as well. In this chapter, we summarize the recent progress in several key areas that impact egg chamber development and ovulation. First, we discuss the mechanisms that drive nutrient storage and trafficking during oocyte maturation and vitellogenesis. Second, we examine the processes that regulate follicle cell patterning and how that patterning impacts the construction of the egg shell and the establishment of embryonic polarity. Finally, we examine regulatory factors that control ovulation, egg activation, and successful fertilization.
Collapse
Affiliation(s)
- Celeste Berg
- Department of Genome Sciences, University of Washington, Seattle, WA 98195-5065 USA
| | - Matthew Sieber
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390 USA
| | - Jianjun Sun
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269 USA
| |
Collapse
|
3
|
Krasnov AN, Evdokimova AA, Mazina MY, Erokhin M, Chetverina D, Vorobyeva NE. Coregulators Reside within Drosophila Ecdysone-Inducible Loci before and after Ecdysone Treatment. Int J Mol Sci 2023; 24:11844. [PMID: 37511602 PMCID: PMC10380596 DOI: 10.3390/ijms241411844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Ecdysone signaling in Drosophila remains a popular model for investigating the mechanisms of steroid action in eukaryotes. The ecdysone receptor EcR can effectively bind ecdysone-response elements with or without the presence of a hormone. For years, EcR enhancers were thought to respond to ecdysone via recruiting coactivator complexes, which replace corepressors and stimulate transcription. However, the exact mechanism of transcription activation by ecdysone remains unclear. Here, we present experimental data on 11 various coregulators at ecdysone-responsive loci of Drosophila S2 cells. We describe the regulatory elements where coregulators reside within these loci and assess changes in their binding levels following 20-hydroxyecdysone treatment. In the current study, we detected the presence of some coregulators at the TSSs (active and inactive) and boundaries marked with CP190 rather than enhancers of the ecdysone-responsive loci where EcR binds. We observed minor changes in the coregulators' binding level. Most were present at inducible loci before and after 20-hydroxyecdysone treatment. Our findings suggest that: (1) coregulators can activate a particular TSS operating from some distal region (which could be an enhancer, boundary regulatory region, or inactive TSS); (2) coregulators are not recruited after 20-hydroxyecdysone treatment to the responsive loci; rather, their functional activity changes (shown as an increase in H3K27 acetylation marks generated by CBP/p300/Nejire acetyltransferase). Taken together, our findings imply that the 20-hydroxyecdysone signal enhances the functional activity of coregulators rather than promoting their binding to regulatory regions during the ecdysone response.
Collapse
Affiliation(s)
- Aleksey N Krasnov
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | | | - Marina Yu Mazina
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Maksim Erokhin
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Darya Chetverina
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Nadezhda E Vorobyeva
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
4
|
Erokhin M, Mogila V, Lomaev D, Chetverina D. Polycomb Recruiters Inside and Outside of the Repressed Domains. Int J Mol Sci 2023; 24:11394. [PMID: 37511153 PMCID: PMC10379775 DOI: 10.3390/ijms241411394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/24/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The establishment and stable inheritance of individual patterns of gene expression in different cell types are required for the development of multicellular organisms. The important epigenetic regulators are the Polycomb group (PcG) and Trithorax group (TrxG) proteins, which control the silenced and active states of genes, respectively. In Drosophila, the PcG/TrxG group proteins are recruited to the DNA regulatory sequences termed the Polycomb response elements (PREs). The PREs are composed of the binding sites for different DNA-binding proteins, the so-called PcG recruiters. Currently, the role of the PcG recruiters in the targeting of the PcG proteins to PREs is well documented. However, there are examples where the PcG recruiters are also implicated in the active transcription and in the TrxG function. In addition, there is increasing evidence that the genome-wide PcG recruiters interact with the chromatin outside of the PREs and overlap with the proteins of differing regulatory classes. Recent studies of the interactomes of the PcG recruiters significantly expanded our understanding that they have numerous interactors besides the PcG proteins and that their functions extend beyond the regulation of the PRE repressive activity. Here, we summarize current data about the functions of the PcG recruiters.
Collapse
Affiliation(s)
- Maksim Erokhin
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Vladic Mogila
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Dmitry Lomaev
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Darya Chetverina
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| |
Collapse
|
5
|
RNA Polymerase II “Pause” Prepares Promoters for Upcoming Transcription during Drosophila Development. Int J Mol Sci 2022; 23:ijms231810662. [PMID: 36142573 PMCID: PMC9503990 DOI: 10.3390/ijms231810662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
According to previous studies, during Drosophila embryogenesis, the recruitment of RNA polymerase II precedes active gene transcription. This work is aimed at exploring whether this mechanism is used during Drosophila metamorphosis. In addition, the composition of the RNA polymerase II “paused” complexes associated with promoters at different developmental stages are described in detail. For this purpose, we performed ChIP-Seq analysis using antibodies for various modifications of RNA polymerase II (total, Pol II CTD Ser5P, and Pol II CTD Ser2P) as well as for subunits of the NELF, DSIF, and PAF complexes and Brd4/Fs(1)h that control transcription elongation. We found that during metamorphosis, similar to mid-embryogenesis, the promoters were bound by RNA polymerase II in the “paused” state, preparing for activation at later stages of development. During mid-embryogenesis, RNA polymerase II in a “pause” state was phosphorylated at Ser5 and Ser2 of Pol II CTD and bound the NELF, DSIF, and PAF complexes, but not Brd4/Fs(1)h. During metamorphosis, the “paused” RNA polymerase II complex included Brd4/Fs(1)h in addition to NELF, DSIF, and PAF. The RNA polymerase II in this complex was phosphorylated at Ser5 of Pol II CTD, but not at Ser2. These results indicate that, during mid-embryogenesis, RNA polymerase II stalls in the “post-pause” state, being phosphorylated at Ser2 of Pol II CTD (after the stage of p-TEFb action). During metamorphosis, the “pause” mechanism is closer to classical promoter-proximal pausing and is characterized by a low level of Pol II CTD Ser2P.
Collapse
|
6
|
Chetverina D, Vorobyeva NE, Mazina MY, Fab LV, Lomaev D, Golovnina A, Mogila V, Georgiev P, Ziganshin RH, Erokhin M. Comparative interactome analysis of the PRE DNA-binding factors: purification of the Combgap-, Zeste-, Psq-, and Adf1-associated proteins. Cell Mol Life Sci 2022; 79:353. [PMID: 35676368 PMCID: PMC11072172 DOI: 10.1007/s00018-022-04383-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/14/2022] [Accepted: 05/08/2022] [Indexed: 01/08/2023]
Abstract
The Polycomb group (PcG) and Trithorax group (TrxG) proteins are key epigenetic regulators controlling the silenced and active states of genes in multicellular organisms, respectively. In Drosophila, PcG/TrxG proteins are recruited to the chromatin via binding to specific DNA sequences termed polycomb response elements (PREs). While precise mechanisms of the PcG/TrxG protein recruitment remain unknown, the important role is suggested to belong to sequence-specific DNA-binding factors. At the same time, it was demonstrated that the PRE DNA-binding proteins are not exclusively localized to PREs but can bind other DNA regulatory elements, including enhancers, promoters, and boundaries. To gain an insight into the PRE DNA-binding protein regulatory network, here, using ChIP-seq and immuno-affinity purification coupled to the high-throughput mass spectrometry, we searched for differences in abundance of the Combgap, Zeste, Psq, and Adf1 PRE DNA-binding proteins. While there were no conspicuous differences in co-localization of these proteins with other functional transcription factors, we show that Combgap and Zeste are more tightly associated with the Polycomb repressive complex 1 (PRC1), while Psq interacts strongly with the TrxG proteins, including the BAP SWI/SNF complex. The Adf1 interactome contained Mediator subunits as the top interactors. In addition, Combgap efficiently interacted with AGO2, NELF, and TFIID. Combgap, Psq, and Adf1 have architectural proteins in their networks. We further investigated the existence of direct interactions between different PRE DNA-binding proteins and demonstrated that Combgap-Adf1, Psq-Dsp1, and Pho-Spps can interact in the yeast two-hybrid assay. Overall, our data suggest that Combgap, Psq, Zeste, and Adf1 are associated with the protein complexes implicated in different regulatory activities and indicate their potential multifunctional role in the regulation of transcription.
Collapse
Affiliation(s)
- Darya Chetverina
- Group of Epigenetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow, 119334, Russia.
| | - Nadezhda E Vorobyeva
- Group of Dynamics of Transcriptional Complexes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Marina Yu Mazina
- Group of Hormone-Dependent Transcriptional Regulation, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Lika V Fab
- Group of Chromatin Biology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow, 119334, Russia
| | - Dmitry Lomaev
- Group of Epigenetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow, 119334, Russia
| | - Alexandra Golovnina
- Group of Epigenetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow, 119334, Russia
| | - Vladic Mogila
- Department of Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow, 119334, Russia
| | - Pavel Georgiev
- Department of Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow, 119334, Russia
| | - Rustam H Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Maksim Erokhin
- Group of Chromatin Biology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow, 119334, Russia.
| |
Collapse
|