Xiao R, Liang H, Tian B, Li X, Song T. A fluorescent sensor for rapid and quantitative aquatic bacteria detection based on bacterial reactive oxygen species using Ag@carbon dots composites.
Mikrochim Acta 2024;
191:699. [PMID:
39455470 DOI:
10.1007/s00604-024-06783-6]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024]
Abstract
A novel fluorescent sensor based on silver nanoparticle-carbon dot composites (Ag@CDs) has been developed for the rapid and quantitative detection of aquatic bacteria. The sensor operates on the principle of plasmon-enhanced resonance energy transfer, where the fluorescence of CDs is quenched by Ag nanoparticles and restored upon bacterial interaction due to the generation of reactive oxygen species. The Ag@CDs exhibit a linear response to bacterial concentration over the range 7 × 104 ~ 4 × 107 CFU·mL-1, with a low detection limit of 4 × 104 CFU·mL-1. The fluorescence recovery is rapid, reaching maximum intensity within 5 min. The method demonstrates high selectivity, with minimal interference from common ions and compounds found in municipal and industrial wastewater. The Ag@CDs-based 96-well plate assay for quantitative measurement of bacteria was developed. The assay's performance was further validated through the analysis of real water samples, showing a recovery of 94.0 ~ 102% for domestic wastewater and 97.6 ~ 106% for industrial wastewater. Also, Ag@CDs-based test strips assay for semi-quantitation were developed for rapid in-field aquatic bacteria detection. Ag@CDs can be conveniently integrated into 96-well plates and test strips, providing rapid on-site aquatic bacteria testing.
Collapse