1
|
Cui X, Liu W, Jiang H, Zhao Q, Hu Y, Tang X, Liu X, Dai H, Rui H, Liu B. IL-12 family cytokines and autoimmune diseases: A potential therapeutic target? J Transl Autoimmun 2025; 10:100263. [PMID: 39759268 PMCID: PMC11697604 DOI: 10.1016/j.jtauto.2024.100263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/28/2024] [Accepted: 12/01/2024] [Indexed: 01/07/2025] Open
Abstract
In recent years, the discovery of IL-12 family cytokines, which includes IL-12, IL-23, IL-27, IL-35, and IL-39, whose biological functions directly or indirectly affect various autoimmune diseases. In autoimmune diseases, IL-12 family cytokines are aberrantly expressed to varying degrees. These cytokines utilize shared subunits to influence T-cell activation and differentiation, thereby regulating the balance of T-cell subsets, which profoundly impacts the onset and progression of autoimmune diseases. In such conditions, IL-12 family members are aberrantly expressed to varying degrees. By exploring their immunomodulatory functions, researchers have identified varying therapeutic potentials for each member. This review examines the physiological functions of the major IL-12 family members and their interactions, discusses their roles in several autoimmune diseases, and summarizes the progress of clinical studies involving monoclonal antibodies targeting IL-12 and IL-23 subunits currently available for treatment.
Collapse
Affiliation(s)
- Xiaoyu Cui
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
| | - Wu Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Hanxue Jiang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Qihan Zhao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
| | - Yuehong Hu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
| | - Xinyue Tang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
| | - Xianli Liu
- Shunyi Branch, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100310, China
| | - Haoran Dai
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Shunyi Branch, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100310, China
| | - Hongliang Rui
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Beijing Institute of Chinese Medicine, Beijing, 100010, China
| | - Baoli Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
| |
Collapse
|
2
|
Tang YY, Wang DC, Chen YY, Xu WD, Huang AF. Th1-related transcription factors and cytokines in systemic lupus erythematosus. Front Immunol 2023; 14:1305590. [PMID: 38164134 PMCID: PMC10757975 DOI: 10.3389/fimmu.2023.1305590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is an inflammatory disorder related to immunity dysfunction. The Th1 cell family including Th1 cells, transcription factor T-bet, and related cytokines IFNγ, TNFα, IL-2, IL-18, TGF-β, and IL-12 have been widely discussed in autoimmunity, such as SLE. In this review, we will comprehensively discuss the expression profile of the Th1 cell family in both SLE patients and animal models and clarify how the family members are involved in lupus development. Interestingly, T-bet-related age-associated B cells (ABCs) and low-dose IL-2 treatment in lupus were emergently discussed as well. Collection of the evidence will better understand the roles of the Th1 cell family in lupus pathogenesis, especially targeting IL-2 in lupus.
Collapse
Affiliation(s)
- Yang-Yang Tang
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Da-Cheng Wang
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - You-Yue Chen
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Wang-Dong Xu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - An-Fang Huang
- Department of Rheumatology and Immunology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
3
|
Xing J, Man C, Liu Y, Zhang Z, Peng H. Factors impacting the benefits and pathogenicity of Th17 cells in the tumor microenvironment. Front Immunol 2023; 14:1224269. [PMID: 37680632 PMCID: PMC10481871 DOI: 10.3389/fimmu.2023.1224269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/07/2023] [Indexed: 09/09/2023] Open
Abstract
Tumor development is closely associated with a complex tumor microenvironment, which is composed of tumor cells, blood vessels, tumor stromal cells, infiltrating immune cells, and associated effector molecules. T helper type 17 (Th17) cells, which are a subset of CD4+ T cells and are renowned for their ability to combat bacterial and fungal infections and mediate inflammatory responses, exhibit context-dependent effector functions. Within the tumor microenvironment, different molecular signals regulate the proliferation, differentiation, metabolic reprogramming, and phenotypic conversion of Th17 cells. Consequently, Th17 cells exert dual effects on tumor progression and can promote or inhibit tumor growth. This review aimed to investigate the impact of various alterations in the tumor microenvironment on the antitumor and protumor effects of Th17 cells to provide valuable clues for the exploration of additional tumor immunotherapy strategies.
Collapse
Affiliation(s)
- Jie Xing
- Department of Laboratory Medicine, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Changfeng Man
- Department of Oncology, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Yingzhao Liu
- Department of Endocrinology, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Huiyong Peng
- Department of Laboratory Medicine, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Umemoto A, Kuwada T, Murata K, Shiokawa M, Ota S, Murotani Y, Itamoto A, Nishitani K, Yoshitomi H, Fujii T, Onishi A, Onizawa H, Murakami K, Tanaka M, Ito H, Seno H, Morinobu A, Matsuda S. Identification of anti-citrullinated osteopontin antibodies and increased inflammatory response by enhancement of osteopontin binding to fibroblast-like synoviocytes in rheumatoid arthritis. Arthritis Res Ther 2023; 25:25. [PMID: 36804906 PMCID: PMC9936655 DOI: 10.1186/s13075-023-03007-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/06/2023] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND Anti-citrullinated protein/peptide antibodies (ACPAs) are present in patients at onset and have important pathogenic roles during the course of rheumatoid arthritis (RA). The characteristics of several molecules recognized by ACPA have been studied in RA, but the positivity rate of autoantibodies against each antigen is not high, and the pathogenic mechanism of each antibody is not fully understood. We investigated the role of anti-citrullinated osteopontin (anti-cit-OPN) antibodies in RA pathogenesis. METHODS Enzyme-linked immunosorbent assays on RA patients' sera were used to detect autoantibodies against OPN. Fibroblast-like synoviocytes (FLS) isolated from RA patients were used to test the binding activity and inflammatory response of OPN mediated by anti-cit-OPN antibodies, and their effect was tested using an inflammatory arthritis mouse model immunized with cit-OPN. Anti-cit-OPN antibody positivity and clinical characteristics were investigated in the patients as well. RESULTS Using sera from 224 RA patients, anti-cit-OPN antibodies were positive in approximately 44% of RA patients, while approximately 78% of patients were positive for the cyclic citrullinated peptide (CCP2) assay. IgG from patients with anti-cit-OPN antibody increased the binding activity of OPN to FLSs, which further increased matrix metalloproteinase and interleukin-6 production in TNF-stimulated FLSs. Mice immunized with cit-OPN antibodies experienced severe arthritis. Anti-cit-OPN antibodies in RA patients decreased the drug survival rate of tumor necrosis factor (TNF) inhibitors, while it did not decrease that of CTLA4-Ig. CONCLUSIONS Anti-cit-OPN antibodies were detected in patients with RA. IgG from patients with anti-cit-OPN antibodies aggravated RA, and anti-cit-OPN antibody was a marker of reduced the survival rate of TNF inhibitors in RA patients.
Collapse
Affiliation(s)
- Akio Umemoto
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, 606-8507, Japan
| | - Takeshi Kuwada
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Koichi Murata
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, 606-8507, Japan. .,Department of Advanced Medicine for Rheumatic Diseases, Kyoto University Graduate School of Medicine, 54 Kawahara-Cho, Shogoin, Sakyo, Kyoto, 606-8507, Japan.
| | - Masahiro Shiokawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan.
| | - Sakiko Ota
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Yoshiki Murotani
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, 606-8507, Japan
| | - Akihiro Itamoto
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, 606-8507, Japan
| | - Kohei Nishitani
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, 606-8507, Japan
| | - Hiroyuki Yoshitomi
- Department of Immunology, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, 606-8501, Japan
| | - Takayuki Fujii
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, 606-8507, Japan.,Department of Advanced Medicine for Rheumatic Diseases, Kyoto University Graduate School of Medicine, 54 Kawahara-Cho, Shogoin, Sakyo, Kyoto, 606-8507, Japan
| | - Akira Onishi
- Department of Advanced Medicine for Rheumatic Diseases, Kyoto University Graduate School of Medicine, 54 Kawahara-Cho, Shogoin, Sakyo, Kyoto, 606-8507, Japan
| | - Hideo Onizawa
- Department of Advanced Medicine for Rheumatic Diseases, Kyoto University Graduate School of Medicine, 54 Kawahara-Cho, Shogoin, Sakyo, Kyoto, 606-8507, Japan
| | - Kosaku Murakami
- Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, 606-8507, Japan
| | - Masao Tanaka
- Department of Advanced Medicine for Rheumatic Diseases, Kyoto University Graduate School of Medicine, 54 Kawahara-Cho, Shogoin, Sakyo, Kyoto, 606-8507, Japan
| | - Hiromu Ito
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, 606-8507, Japan.,Department of Advanced Medicine for Rheumatic Diseases, Kyoto University Graduate School of Medicine, 54 Kawahara-Cho, Shogoin, Sakyo, Kyoto, 606-8507, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Akio Morinobu
- Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, 606-8507, Japan
| | - Shuichi Matsuda
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, 606-8507, Japan
| |
Collapse
|
5
|
Combined atorvastatin and pentoxifylline in ameliorating inflammation induced by complete Freund’s adjuvant. Inflammopharmacology 2022; 30:935-944. [DOI: 10.1007/s10787-022-00957-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 02/21/2022] [Indexed: 11/05/2022]
|
6
|
Furuyama K, Kondo Y, Shimizu M, Yokosawa M, Segawa S, Iizuka A, Tanimura R, Tsuboi H, Matsumoto I, Sumida T. RORγt+Foxp3+ regulatory T cells in the regulation of autoimmune arthritis. Clin Exp Immunol 2021; 207:176-187. [PMID: 35020849 PMCID: PMC8982961 DOI: 10.1093/cei/uxab007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 09/24/2021] [Accepted: 10/19/2021] [Indexed: 02/03/2023] Open
Abstract
RORγt+Foxp3+regulatory T (Treg) cells, known as T regulatory 17 cells (Tr17 cells), are a novel subset of Treg cells, which have the potential to regulate the development of experimental autoimmune encephalomyelitis (EAE) thorough a specific repression of T helper 17 (Th17) cell-mediated inflammation. However, the function of Tr17 cells the development of other autoimmune diseases such as autoimmune arthritis remains unclear. Collagen-induced arthritis (CIA) was found to be prolonged in Foxp3creRORγtfl/fl mice, in which Tr17 cells were deleted, compared with Foxp3wtRORγtfl/fl mice. Tr17 cells were significantly increased in ankle joints (AJ) compared with draining lymph nodes after the onset of arthritis. CC chemokine receptor 6 (CCR6) was up-regulated on Tr17 cells compared to RORγt negative Treg cells. CD25, cytotoxic T-lymphocyte antigen 4 (CTLA-4), glucocorticoid-induced TNF-receptor (GITR), and inducible T-cell co-stimulator (ICOS) expression was also up-regulated on Tr17 cells compared to RORγt negative Treg cells. IL-10-producing cells and Blimp-1+ and T-bet+ cells were increased in Tr17 cells compared to RORγt-negative Treg cells. Tr17-enriched Treg cells significantly suppressed proliferation of conventional T cells through IL-10 compared with CCR6-Treg cells. Tr17 cells increased during the clinical course of CIA and accumulated in inflamed joints. Taken together, it appears that Tr17 cells play a crucial role in the regulation of autoimmune arthritis.
Collapse
Affiliation(s)
- Kotona Furuyama
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba City, Ibaraki, Japan
| | - Yuya Kondo
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba City, Ibaraki, Japan
| | - Masaru Shimizu
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba City, Ibaraki, Japan
| | - Masahiro Yokosawa
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba City, Ibaraki, Japan
| | - Seiji Segawa
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba City, Ibaraki, Japan
| | - Akira Iizuka
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba City, Ibaraki, Japan
| | - Reona Tanimura
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba City, Ibaraki, Japan
| | - Hiroto Tsuboi
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba City, Ibaraki, Japan
| | - Isao Matsumoto
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba City, Ibaraki, Japan
| | - Takayuki Sumida
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba City, Ibaraki, Japan,Correspondence: Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba City, Ibaraki 305-8575, Japan.
| |
Collapse
|