1
|
Kercher MM, Leonardelli S, Cargnel GJ, Vanderlinde R. Determination of exogenous water in grape juice through the isotopic analysis of 18O/16O. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2023. [DOI: 10.1590/1981-6723.17222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Abstract The consumption of grape juice has been growing significantly, so its quality is becoming an issue of great importance, both for the consumer and for the industry. However, identifying adulteration in juice is a great challenge and requires a reliable analytical process. The isotope ratio (18O/16O) is an important tool to determine the addition of exogenous water in beverages, however, there is no official method for juice in Brazil. This study aimed to develop and validate a method for detecting exogenous water in grape juice through isotopic analysis of 18O/16O. The development and validation of the analytical method were performed using Isotope Ratio Mass Spectrometry (IRMS). The effect of temperature and evaporation of δ18O in experimental juices was evaluated, and reference values were found for juices based on the δ 18O of musts. The influence of the juice industrial production process on 18O values was verified, and commercial juices were evaluated in relation to the values of reference regarding the addition of water. The temperature and evaporation parameters did not influence the results of the 18O of the juice, as they presented differences lower than the method uncertainty. The heat exchanger system did not influence the proposed method. The reference values for juice can come from the musts, without affecting the interpretation of the final results. Of the thirty real juices analyzed, nine had exogenous water, three proved to be reconstituted juices and eighteen were considered to have no exogenous water. The method proposed and validated in this study presented values for the limit of detection (LOD) of 0.24‰, the limit of quantification (LOQ) of 0.97‰ and measurement uncertainty of 0.71‰, proving to be effective for the detection of exogenous water in grape juice, through of the analysis of the isotopic ratio of 18O/16O by IRMS.
Collapse
Affiliation(s)
- Mirella Mallmann Kercher
- Universidade de Caxias do Sul, Brasil; Secretaria da Agricultura, Pecuária e Desenvolvimento Rural, Brasil
| | | | | | | |
Collapse
|
2
|
Holloway-Phillips M, Baan J, Nelson DB, Lehmann MM, Tcherkez G, Kahmen A. Species variation in the hydrogen isotope composition of leaf cellulose is mostly driven by isotopic variation in leaf sucrose. PLANT, CELL & ENVIRONMENT 2022; 45:2636-2651. [PMID: 35609972 DOI: 10.1111/pce.14362] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Experimental approaches to isolate drivers of variation in the carbon-bound hydrogen isotope composition (δ2 H) of plant cellulose are rare and current models are limited in their application. This is in part due to a lack in understanding of how 2 H-fractionations in carbohydrates differ between species. We analysed, for the first time, the δ2 H of leaf sucrose along with the δ2 H and δ18 O of leaf cellulose and leaf and xylem water across seven herbaceous species and a starchless mutant of tobacco. The δ2 H of sucrose explained 66% of the δ2 H variation in cellulose (R2 = 0.66), which was associated with species differences in the 2 H enrichment of sucrose above leaf water ( ε sucrose <math altimg="urn:x-wiley:01407791:media:pce14362:pce14362-math-0001" wiley:location="equation/pce14362-math-0001.png" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mtext>\unicode{x003B5}</mtext><mtext>sucrose</mtext></msub></mrow></math> : -126% to -192‰) rather than by variation in leaf water δ2 H itself. ε sucrose <math altimg="urn:x-wiley:01407791:media:pce14362:pce14362-math-0002" wiley:location="equation/pce14362-math-0002.png" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mtext>\unicode{x003B5}</mtext><mtext>sucrose</mtext></msub></mrow></math> was positively related to dark respiration (R2 = 0.27), and isotopic exchange of hydrogen in sugars was positively related to the turnover time of carbohydrates (R2 = 0.38), but only when ε sucrose <math altimg="urn:x-wiley:01407791:media:pce14362:pce14362-math-0003" wiley:location="equation/pce14362-math-0003.png" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi mathvariant="normal">\unicode{x003B5}</mi><mtext>sucrose</mtext></msub></mrow></mrow></math> was fixed to the literature accepted value of - 171 <math altimg="urn:x-wiley:01407791:media:pce14362:pce14362-math-0004" wiley:location="equation/pce14362-math-0004.png" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mo>\unicode{x02212}</mo><mn>171</mn></mrow></mrow></math> ‰. No relation was found between isotopic exchange of hydrogen and oxygen, suggesting large differences in the processes shaping post-photosynthetic fractionation between elements. Our results strongly advocate that for robust applications of the leaf cellulose hydrogen isotope model, parameterization utilizing δ2 H of sugars is needed.
Collapse
Affiliation(s)
| | - Jochem Baan
- Department of Environmental Science-Botany, University of Basel, Basel, Switzerland
| | - Daniel B Nelson
- Department of Environmental Science-Botany, University of Basel, Basel, Switzerland
| | - Marco M Lehmann
- Research Unit of Forest Dynamics, Research Group of Ecosystem Ecology, Stable Isotope Research Centre, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmendsorf, Switzerland
| | - Guillaume Tcherkez
- Research School of Biology, College of Science, Australian National University, Canberra, Australian Capital Territory, Australia
- Institut de Recherche en Horticulture et Semences, Université d'Angers, INRAe, Beaucouzé, France
| | - Ansgar Kahmen
- Department of Environmental Science-Botany, University of Basel, Basel, Switzerland
| |
Collapse
|
3
|
Application of stable isotope technique to authenticate the geographical origin of imported apple products. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08450-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Horacek M, Klcova L, Hudcovicova M, Ondreickova K, Gubis J, Hölzl S. Differentiation of Apricots of Different Geographic Origin in Central and Southern Europe by Applying 87Sr/ 86Sr Analysis: Potential and Limitations. Foods 2022; 11:2239. [PMID: 35954007 PMCID: PMC9368356 DOI: 10.3390/foods11152239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/17/2022] [Accepted: 07/13/2022] [Indexed: 02/05/2023] Open
Abstract
Consumers prefer food commodities of certain origins over the same products of other provenances and are willing to pay higher prices for them. Thus, it is possible to increase profit simply by giving an incorrect geographic origin to a product. To effectively control the declared geographic origin of food, the product itself has to be investigated to discover whether it actually originates from the declared origin, or if it has been mislabeled. Conventionally, control of a geographic origin is conducted by stable isotope analysis of the main elements, which has proven to be successful in numerous cases, but often reference data have to be produced anew for every harvest to control, resulting in additional costs and delays. Applying entirely geogenic parameters for the control of provenance requires reference data to be produced only once. As they do not vary between years and harvests, they can often be used for different (food) commodities. Here, we investigate whether the geographic origin of apricot samples can be controlled by their 87Sr/86Sr ratios measured by TIMS. The results show that Slovak and Hungarian apricots can be differentiated from the Wachau apricots, a well-known regional Austrian brand, and those from other regions in Austria, even though the differentiation from the latter is only partial. 87Sr/86Sr investigations can be a very potent tool; however, its success depends on the exact question that needs to be answered.
Collapse
Affiliation(s)
- Micha Horacek
- HBLFA Francisco-Josephinum, BLT Wieselburg, Rottenhauserstr. 1, 3250 Wieselburg, Austria
- HBLA & BA of Pomology and Enology, Wienerstr. 74, 3400 Klosterneuburg, Austria
- Department of Lithospheric Research, Vienna University, Althanstr. 14, 1090 Vienna, Austria
| | - Lenka Klcova
- National Agricultural and Food Centre, Research Institute of Plant Production, Bratislavská Cesta 122, 921 68 Piestany, Slovakia; (L.K.); (M.H.); (K.O.); (J.G.)
| | - Martina Hudcovicova
- National Agricultural and Food Centre, Research Institute of Plant Production, Bratislavská Cesta 122, 921 68 Piestany, Slovakia; (L.K.); (M.H.); (K.O.); (J.G.)
| | - Katarina Ondreickova
- National Agricultural and Food Centre, Research Institute of Plant Production, Bratislavská Cesta 122, 921 68 Piestany, Slovakia; (L.K.); (M.H.); (K.O.); (J.G.)
| | - Jozef Gubis
- National Agricultural and Food Centre, Research Institute of Plant Production, Bratislavská Cesta 122, 921 68 Piestany, Slovakia; (L.K.); (M.H.); (K.O.); (J.G.)
| | - Stefan Hölzl
- RiesKraterMuseum, 86720 Noerdlingen, Germany;
- Staatliche Naturwissenschaftliche Sammlungen Bayerns, Menzinger Straße 71, 80638 Munich, Germany
| |
Collapse
|
5
|
Cueni F, Nelson DB, Kahmen A. Effects of phenotypic variability on the oxygen and hydrogen isotope compositions of grains in different winter wheat varieties. ISOTOPES IN ENVIRONMENTAL AND HEALTH STUDIES 2022; 58:60-80. [PMID: 34846959 DOI: 10.1080/10256016.2021.2002855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
Stable isotope analyses are the leading method for geographic origin determination, especially of plant-based agricultural products. Origin analysis is typically done by comparing a suspicious sample to reference materials with known geographic origin. Reference materials are usually collected at the species level, assuming different varieties of a species to have comparable isotope compositions within a given location. We evaluated whether different phenotypes that are expressed in different varieties of winter wheat (Triticum aestivum L.) influence the oxygen (δ18O) and hydrogen (δ2H) isotope composition of plant tissue water and organic compounds. We found that mean δ18O and δ2H values among winter wheat varieties did not differ significantly in leaf water, however, differed significantly in bulk dried grain tissue. The differences in bulk dried grain δ18O and δ2H values among varieties can be related to differences in phenotypic trait expression among varieties. Despite this substantial phenotypic variability, the overall variability of bulk dried grain δ18O and δ2H values among varieties was small (SD 0.54 ‰ for oxygen, 3.60 ‰ for hydrogen). We thus conclude that reference materials collected at the species level should be sufficient for geographic origin analysis of winter wheat and possibly other cereals using δ18O and δ2H values.
Collapse
Affiliation(s)
- Florian Cueni
- Department of Environmental Sciences - Botany, University of Basel, Basel, Switzerland
- Agroisolab GmbH, Jülich, Germany
| | - Daniel B Nelson
- Department of Environmental Sciences - Botany, University of Basel, Basel, Switzerland
| | - Ansgar Kahmen
- Department of Environmental Sciences - Botany, University of Basel, Basel, Switzerland
| |
Collapse
|
6
|
O'Sullivan R, Schmidt O, Monahan FJ. Stable isotope ratio analysis for the authentication of milk and dairy ingredients: A review. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2021.105268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|