1
|
Han P, Hua Z, Zhao Y, Huang L, Yuan Y. PuCRZ1, an C2H2 transcription factor from Polyporus umbellatus, positively regulates mycelium response to osmotic stress. Front Microbiol 2023; 14:1131605. [PMID: 37089566 PMCID: PMC10115967 DOI: 10.3389/fmicb.2023.1131605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 03/21/2023] [Indexed: 04/09/2023] Open
Abstract
Polyporus umbellatus is an edible and medicinal mushroom with the capacity to produce sclerotia. However, the mechanism of P. umbellatus sclerotia formation is unclear. CRZ1 is a C2H2 family transcription factor involved in the Ca2+-calcineurin signaling pathway, which has the function of regulating sclerotia formation, maintaining ion homeostasis, and responding to stress. In this study, we identified 28 C2H2 transcription factors in P. umbellatus genome, 13 of which are differentially expressed between mycelium and sclerotia, including PuCRZ1. Combining DNA affinity purification and sequencing (DAP-seq) and quantitative real-time PCR (qRT-PCR), three genes (PuG10, PuG11, PuG12) were identified as putative PuCRZ1 target genes containing a putative binding motif (GTGGCG) within their promoter. Yeast single hybridization (Y1H) and EMSA further confirmed that PuCRZ1 can bind to the promoter region of PuG10, PuG11, and PuG12. PuCRZ1 gene could reduce the sensitivity of NaCl in yeast cells. Furthermore, overexpression of the PuCRZ1 target gene, especially the FVLY domain containing gene PuG11, could improve the mycelia growth rate and mannitol tolerance in P. umbellatus. These results demonstrate that PuCRZ1 in the Ca2+-calcineurin signaling pathway plays an important role in mycelia growth, as well as osmotic stress tolerance.
Collapse
Affiliation(s)
- Pengjie Han
- School of Pharmaceutical Sciences, Peking University, Beijing, China
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhongyi Hua
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Zhao
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- School of Pharmaceutical Sciences, Peking University, Beijing, China
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Luqi Huang,
| | - Yuan Yuan
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yuan Yuan,
| |
Collapse
|
2
|
Qiu Z, Wang X, Wang S, Cai N, Huang J, Wang M, Shu L, Li T. Transcriptome Analysis Revealed the Mechanism of Inhibition of Saprophytic Growth of Sparassis latifolia by Excessive Oxalic Acid. Cells 2022; 11:cells11223636. [PMID: 36429064 PMCID: PMC9688073 DOI: 10.3390/cells11223636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Sparassis latifolia, a highly valued edible fungus, is a crucial medicinal and food resource owing to its rich active ingredients and pharmacological effects. Excessive oxalic acid secreted on a pine-sawdust-dominated substrate inhibits its mycelial growth, and severely restricts the wider development of its cultivation. However, the mechanism underlying the relationship between oxalic acid and slow mycelial growth remains unclear. The present study reported the transcriptome-based response of S. latifolia induced by different oxalic acid concentrations. In total, 9206 differentially expressed genes were identified through comparisons of three groups; 4587 genes were down-regulated and 5109 were up-regulated. Transcriptome analysis revealed that excessive oxalic acid mainly down-regulates the expression of genes related to carbohydrate utilization pathways, energy metabolism, amino acid metabolism, protein synthesis metabolism, glycan biosynthesis, and signal transduction pathways. Moreover, genes encoding for wood-degrading enzymes were predominantly down-regulated in the mycelia treated with excessive oxalic acid. Taken together, the study results provide a speculative mechanism underlying the inhibition of saprophytic growth by excessive oxalic acid and a foundation for further research on the growth of S. latifolia mycelia.
Collapse
Affiliation(s)
- Zhiheng Qiu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang 110866, China
| | - Xinyi Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang 110866, China
| | - Shuang Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang 110866, China
| | - Nuo Cai
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang 110866, China
| | - Jing Huang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang 110866, China
| | - Miaoyue Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang 110866, China
| | - Lili Shu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang 110866, China
- Correspondence: (L.S.); (T.L.); Tel.: +86-024-88487143 (L.S.)
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang 110866, China
- Correspondence: (L.S.); (T.L.); Tel.: +86-024-88487143 (L.S.)
| |
Collapse
|
3
|
Han M, Yang H, Yu G, Jiang P, You S, Zhang L, Lin H, Liu J, Shu Y. Application of Non-invasive Micro-test Technology (NMT) in environmental fields: A comprehensive review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 240:113706. [PMID: 35659702 DOI: 10.1016/j.ecoenv.2022.113706] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Non-invasive Micro-test Technology (NMT) is a selective microelectrode technique which can detect the flux rates and three-dimensional motion directions of ions or molecules into and out of living organisms in situ without damaging the sample. It has the advantages of maintaining sample integrity, high temporal and spatial resolution, and being able to measure multiple sites simultaneously. In this paper we provide a comprehensive review on the development of NMT in recent years. Its principles, characteristics, and the differences with other microelectrode techniques are introduced. We discuss the applications of NMT in the field of phytoremediation, plant resistance, water quality monitoring, and toxicity mechanisms of heavy metals on organisms. Furthermore, the challenges and future prospects of NMT in the environmental field are presented.
Collapse
Affiliation(s)
- Mengxuan Han
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China
| | - Huan Yang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China
| | - Guo Yu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China.
| | - Pingping Jiang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China
| | - Shaohong You
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China; Technical Innovation Center of Mine Geological Environmental Restoration Engineering in Southern Karst Area, MNR, Guilin, China.
| | - Lei Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Canada
| | - Hua Lin
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China
| | - Jie Liu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China; Technical Innovation Center of Mine Geological Environmental Restoration Engineering in Southern Karst Area, MNR, Guilin, China
| | - Yi Shu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China
| |
Collapse
|