1
|
Wang J, Kunikata H, Yasuda M, Himori N, Nitta F, Nakazawa T. Systemic Oxidative Stress Level as a Pathological and Prognostic Factor in Myopic Choroidal Neovascularization. OPHTHALMOLOGY SCIENCE 2024; 4:100550. [PMID: 39100756 PMCID: PMC11293568 DOI: 10.1016/j.xops.2024.100550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/18/2024] [Accepted: 04/29/2024] [Indexed: 08/06/2024]
Abstract
Purpose To investigate the association of systemic oxidative stress level with myopic choroidal neovascularization (mCNV) and its clinical outcomes. Design Retrospective case-control study. Participants This retrospective study included 52 eyes of 52 healthy participants (mean age: 62.5 years), 30 eyes of 30 patients (mean age: 59.6 years) with high myopia (HM) but without mCNV, and 23 eyes of 23 patients (mean age: 61.8 years) with HM and mCNV who received intravitreal anti-VEGF antibody injections (IVIs) using a pro re nata regimen during the 6-month follow-up after the first IVI. Methods Clinical findings, including oxidative stress parameters, such as diacron reactive oxygen metabolites (dROMs), biological antioxidant potential (BAP), and the BAP/dROM ratio (B/d ratio), were analyzed. Main Outcome Measures Clinical features and oxidative stress parameters. Results Both BAP and the B/d ratio were significantly lower in the HM/mCNV group than in the HM/no mCNV group (P = 0.002 and P = 0.012, respectively) and than in the control group (P = 0.001 and P = 0.026, respectively). In a multiple logistic regression analysis, axial length (odds ratio 1.878, P = 0.042) and the B/d ratio (odds ratio 0.470, P = 0.026) were significantly associated with mCNV. Dividing the patients into high and low B/d ratio groups (with a cutoff of 5.2) showed that subfoveal choroidal thickness (SFCT) was lower (P = 0.002) and the number of IVI treatments was higher (P = 0.029) in the low B/d ratio group than in the high B/d ratio group. In multiple regression analyses, only the B/d ratio was significantly associated with SFCT (β = 0.684, P = 0.006). Conclusions The oxidative stress level in eyes with HM differed according to mCNV, SFCT, and the number of IVI treatments. Measuring oxidative stress parameters might be useful in eyes with HM both for assessing the risk of developing mCNV and determining disease activity. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Jiying Wang
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hiroshi Kunikata
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Masayuki Yasuda
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Noriko Himori
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Fumihiko Nitta
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
2
|
Pei X, Huang D, Li Z. Genetic insights and emerging therapeutics in diabetic retinopathy: from molecular pathways to personalized medicine. Front Genet 2024; 15:1416924. [PMID: 39246572 PMCID: PMC11378321 DOI: 10.3389/fgene.2024.1416924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 08/12/2024] [Indexed: 09/10/2024] Open
Abstract
Diabetic retinopathy (DR) is a major complication of diabetes worldwide, significantly causing vision loss and blindness in working-age adults, and imposing a substantial socioeconomic burden globally. This review examines the crucial role of genetic factors in the development of DR and highlights the shift toward personalized treatment approaches. Advances in genetic research have identified specific genes and variations involved in angiogenesis, inflammation, and oxidative stress that increase DR susceptibility. Understanding these genetic markers enables early identification of at-risk individuals and the creation of personalized treatment plans. Incorporating these genetic insights, healthcare providers can develop early intervention strategies and tailored treatment plans to improve patient outcomes and minimize side effects. This review emphasizes the transformative potential of integrating genetic information into clinical practice, marking a paradigm shift in DR management and advancing toward a more personalized and effective healthcare model.
Collapse
Affiliation(s)
- Xiaoting Pei
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Duliurui Huang
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhijie Li
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Liu Y, Gong Y, Li M, Li J. Quercetin protects against hyperglycemia-induced retinopathy in Sprague Dawley rats by regulating the gut-retina axis and nuclear factor erythroid-2-related factor 2 pathway. Nutr Res 2024; 122:55-67. [PMID: 38185061 DOI: 10.1016/j.nutres.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 01/09/2024]
Abstract
Hyperglycemia-related retinopathy is a disease with a high blindness rate. Recent reports indicate that many flavonol compounds have the potential to prevent the occurrence of disease in the retina by regulating the gut-retina axis. Here, we hypothesized that quercetin could alleviate the symptoms of retinopathy. To clarify the mechanism, Sprague Dawley rats were fed a high-fat diet containing quercetin for 12 weeks and injected with streptozotocin in the ninth week. Additionally, neomycin and ampicillin were used to establish a pseudo-sterile rat model. Afterward, changes in the retina were investigated by using electroretinogram and optical coherence tomography. Blood and tissue samples were collected and biochemical components were analyzed. The extent of intestinal injury was determined via hematoxylin-eosin staining. Microbial community structure was analyzed by using 16S ribosomal RNA sequencing. Finally, the expression of genes was analyzed using real-time polymerase chain reaction. The results showed that quercetin reduced the decline in electroretinography amplitude and outer nuclear layer thickness, increased the activities of antioxidant enzymes, decreased the contents of proinflammatory factors and blood glucose, enhanced the concentration of insulin, and inhibited intestinal dysbiosis and improved gut morphology. Importantly, the underexpression of nuclear factor erythroid-2 related factor 2 in the retina was reversed by quercetin. However, trend changes were no longer significant in most of the indicators after antibiotic treatment. In summary, quercetin has therapeutic effects on retinopathy by regulating the gut-retina axis and nuclear factor erythroid-2 related factor 2 pathway, and the presence of gut microbiota helps quercetin exert its effects on the retina.
Collapse
Affiliation(s)
- Yaojie Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yibo Gong
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin 300384, China
| | - Mengting Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Jianke Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
4
|
Wu X, Mu L, Dong Z, Wu J, Zhang S, Su J, Zhang Y. Hu-Zhang Qing-Mai Formulation anti-oxidative stress alleviates diabetic retinopathy: Network pharmacology analysis and in vitro experiment. Medicine (Baltimore) 2023; 102:e35034. [PMID: 37682156 PMCID: PMC10489428 DOI: 10.1097/md.0000000000035034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 08/10/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND In this study, the potential mechanism of the Hu-Zhang Qing-Mai Formulation (HZQMF) on diabetic retinopathy (DR) in inhibiting oxidative stress was explored through network pharmacology analysis and in vitro experiments. METHODS The Traditional Chinese Medicine Systematic Pharmacology Analysis Platform was used to retrieve the active pharmaceutical ingredients and targets of HZQMF. DR-related genes and oxidative stress-related genes were obtained from PharmGKB, TTD, OMIM, GeneCards, and Drugbank. STRING was used to construct a protein-protein interaction network to screen core targets. Gene ontology and Kyoto encyclopedia of genes and genomes enrichment analyses were performed using R 4.0.3. Network topology analysis was carried out using Cytoscape 3.8.2. Finally, we looked into how well the main API protected human retinal pigment epithelial cells from damage brought on by hydrogen peroxide (H2O2). RESULTS Quercetin (Que) was identified as the primary API of HZQMF through network pharmacology analysis, while JUN, MAPK1, and STAT3 were identified as the primary hub genes. Kyoto encyclopedia of genes and genomes enrichment analysis showed that the AGE-RAGE signaling pathway may be crucial to the therapeutic process. In vitro experiments confirmed that Que increased cell vitality and inhibited apoptosis. CONCLUSION Que might significantly reduce H2O2-induced ARPE-19 cell injury by inhibiting apoptosis-related genes of the AGE-RAGE pathway (JUN, MAPK1, STAT3). This study lays the foundation for further research on HZQMF in treating DR.
Collapse
Affiliation(s)
- Xiaoyu Wu
- Department of Ophthalmology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lin Mu
- Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Zhiguo Dong
- Department of Ophthalmology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiajun Wu
- Department of Ophthalmology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shuyan Zhang
- Department of Ophthalmology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Su
- Department of Ophthalmology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yinjian Zhang
- Department of Ophthalmology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Jiang F, Zhou L, Zhang C, Jiang H, Xu Z. Malondialdehyde levels in diabetic retinopathy patients: a systematic review and meta-analysis. Chin Med J (Engl) 2023; 136:1311-1321. [PMID: 37101358 PMCID: PMC10309507 DOI: 10.1097/cm9.0000000000002620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND It remains unclear whether circulating malondialdehyde (MDA) levels change in people with diabetic retinopathy (DR). This systematic review compared circulating MDA levels in diabetic people with and without DR. METHODS PubMed, Medline (Ovid), Embase (Ovid), and Web of Science were searched for case-control studies conducted before May 2022 in English that compared circulating MDA levels in people with and without DR. The following MeSH search terms were used: ("malondialdehyde" or "thiobarbituric acid reactive substances [TBARS]" or "lipid peroxidation" or "oxidative stress") and "diabetic retinopathy." Newcastle-Ottawa Quality Assessment Scale was used to evaluate the quality of the included studies. Random-effects pairwise meta-analysis pooled the effect size with standardized mean difference (SMD) and 95% confidence intervals (CIs). RESULTS This meta-analysis included 29 case-control studies with 1680 people with DR and 1799 people with diabetes but not DR. Compared to people without DR, the circulating MDA levels were higher in those with DR (SMD, 0.897; 95% CI, 0.631 to 1.162; P < 0.001). The study did not identify credible subgroup effects or publication bias and the sensitivity analysis confirmed the robustness of the study. CONCLUSIONS Circulating MDA levels are higher in people with DR compared to those without. Future comparative studies that use more specific methods are required to draw firm conclusions. REGISTRATION PROSPERO; https://www.crd.york.ac.uk/PROSPERO/ ; No. CRD42022352640.
Collapse
Affiliation(s)
- Fanwen Jiang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | | | | | | | | |
Collapse
|
6
|
Ebrahimi M, Sivaprasad S, Thompson P, Perry G. Retinal Neurodegeneration in Euglycemic Hyperinsulinemia, Prediabetes, and Diabetes. Ophthalmic Res 2022; 66:385-397. [PMID: 36463857 DOI: 10.1159/000528503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2023]
Abstract
Diabetic retinopathy (DR) is a challenging public health problem mainly because of its growing prevalence and risk of blindness. In general, our current knowledge and practice have failed to prevent the onset or progression of DR to sight-threatening complications. While there are treatment options for sight-threatening complications of DR, it is crucial to pay more attention to the early stages of DR to decrease its prevalence. Growing evidence suggests many pathologic changes occur before clinical presentations of DR in euglycemic hyperinsulinemia, prediabetes, and diabetes. These pathological changes occur in retinal neurons, glia, and microvasculature. A new focus on these preclinical pathologies - especially on hyperinsulinemia - may provide further insight into disease mechanisms, endpoints for clinical trials, and druggable targets in early disease. Here, we review the current evidence on the pathophysiological changes reported in preclinical DR and appraise preventive and treatment options for DR.
Collapse
Affiliation(s)
- Moein Ebrahimi
- Network of Immunity in Infection, Malignancy, and Autoimmunity, Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sobha Sivaprasad
- NIHR Moorfields Biomedical Research Centre, Moorfields Eye Hospital, London, UK
| | - Paul Thompson
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - George Perry
- Department of Biology, University of Texas and San Antonio, San Antonio, Texas, USA
| |
Collapse
|
7
|
Klimczak-Tomaniak D, Haponiuk-Skwarlińska J, Kuch M, Pączek L. Crosstalk between microRNA and Oxidative Stress in Heart Failure: A Systematic Review. Int J Mol Sci 2022; 23:15013. [PMID: 36499336 PMCID: PMC9736401 DOI: 10.3390/ijms232315013] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 12/02/2022] Open
Abstract
Heart failure is defined as a clinical syndrome consisting of key symptoms and is due to a structural and/or functional alteration of the heart that results in increased intracardiac pressures and/or inadequate cardiac output at rest and/or during exercise. One of the key mechanisms determining myocardial dysfunction in heart failure is oxidative stress. MicroRNAs (miRNAs, miRs) are short, endogenous, conserved, single-stranded non-coding RNAs of around 21-25 nucleotides in length that act as regulators of multiple processes. A systematic review following the PRISMA guidelines was performed on the evidence on the interplay between microRNA and oxidative stress in heart failure. A search of Pubmed, Embase, Scopus, and Scopus direct databases using the following search terms: 'heart failure' AND 'oxidative stress' AND 'microRNA' or 'heart failure' AND 'oxidative stress' AND 'miRNA' was conducted and resulted in 464 articles. Out of them, 15 full text articles were eligible for inclusion in the qualitative analysis. Multiple microRNAs are involved in the processes associated with oxidative stress leading to heart failure development including mitochondrial integrity and function, antioxidant defense, iron overload, ferroptosis, and survival pathways.
Collapse
Affiliation(s)
- Dominika Klimczak-Tomaniak
- Department of Cardiology, Hypertension and Internal Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Julia Haponiuk-Skwarlińska
- Department of Cardiology, Hypertension and Internal Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
- Department of Pediatric Cardiology and General Pediatrics, Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Marek Kuch
- Department of Cardiology, Hypertension and Internal Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Leszek Pączek
- Department of Immunology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| |
Collapse
|
8
|
Milluzzo A, Barchitta M, Maugeri A, Magnano San Lio R, Favara G, Mazzone MG, Sciacca L, Agodi A. Do Nutrients and Nutraceuticals Play a Role in Diabetic Retinopathy? A Systematic Review. Nutrients 2022; 14:4430. [PMID: 36297113 PMCID: PMC9612209 DOI: 10.3390/nu14204430] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022] Open
Abstract
Diabetic retinopathy (DR) is a multifactorial neuro-microvascular disease, whose prevalence ranges from 25% to 60% of subjects affected by diabetes mellitus, representing the main cause of legal blindness in adults of industrialized countries. The treatment of advanced stage of DR is based on invasive and expensive therapies, while few strategies are available for the early stage or prevention. The mechanisms underlying DR involve a complex interplay between the detrimental effects of hyperglycemia, dyslipidemia, hypoxia, and oxidative stress, providing several pathways potentially targeted by nutrients and nutraceuticals. In this study, we conducted a systematic review of observational and interventional studies, evaluating the effect of nutrients and/or nutraceuticals on the risk of DR and their potential use for the treatment of patients with DR. The analysis of the 41 included studies (27 observational and 14 interventional studies) suggests a promising preventive role of some nutrients, in particular for vitamins B (i.e., B1 and B12), D, and E. However, further investigations are necessary to clarify the potential clinical application of nutraceuticals in the prevention and treatment of DR.
Collapse
Affiliation(s)
- Agostino Milluzzo
- Department of Clinical and Experimental Medicine, Endocrinology Section, University of Catania, 95122 Catania, Italy
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, Via S. Sofia 87, 95123 Catania, Italy
| | - Martina Barchitta
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, Via S. Sofia 87, 95123 Catania, Italy
| | - Andrea Maugeri
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, Via S. Sofia 87, 95123 Catania, Italy
| | - Roberta Magnano San Lio
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, Via S. Sofia 87, 95123 Catania, Italy
| | - Giuliana Favara
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, Via S. Sofia 87, 95123 Catania, Italy
| | - Maria Grazia Mazzone
- Research, Preclinical Development and Patents, SIFI S.p.A., Lavinaio-Aci S. Antonio, 95025 Catania, Italy
| | - Laura Sciacca
- Department of Clinical and Experimental Medicine, Endocrinology Section, University of Catania, 95122 Catania, Italy
| | - Antonella Agodi
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, Via S. Sofia 87, 95123 Catania, Italy
| |
Collapse
|