1
|
Dias N, Dias M, Ribeiro A, Gomes N, Moraes A, Wesley M, Gonzaga C, Ramos DDAR, Braz S, Dallago B, de Carvalho JL, Hagström L, Nitz N, Hecht M. Network Analysis of Pathogenesis Markers in Murine Chagas Disease Under Antimicrobial Treatment. Microorganisms 2024; 12:2332. [PMID: 39597721 PMCID: PMC11596328 DOI: 10.3390/microorganisms12112332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Chagas disease (CD), a disease affecting millions globally, remains shrouded in scientific uncertainty, particularly regarding the role of the intestinal microbiota in disease progression. This study investigates the effects of antibiotic-induced microbiota depletion on parasite burden, immune responses, and clinical outcomes in BALB/c mice infected with either the Trypanosoma cruzi Colombiana or CL Brener strains. Mice were treated with a broad-spectrum antibiotic cocktail before infection, and parasite burden was quantified via qPCR at 30 and 100 days post-infection (dpi). Immune responses were analyzed using flow cytometry and ELISA, while histopathology was conducted on cardiac and intestinal tissues. Antibiotic treatment uncovered strain-specific correlations, with Colombiana infections affecting Bifidobacterium populations and CL Brener infections linked to Lactobacillus. Microbiota depletion initially reduced parasite burden in the heart and intestine, but an increase was observed in the chronic phase, except in the CL Brener-infected gut, where an early burden spike was followed by a decline. Antibiotic-induced bacterial shifts, such as reductions in Bacteroides and Bifidobacterium, promoted a more pro-inflammatory immune profile. These findings highlight the importance of microbiota and strain-specific factors in CD and suggest further research into microbiota manipulation as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Nayra Dias
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília 70910-900, Brazil; (N.D.); (M.D.); (A.R.); (N.G.); (A.M.); (M.W.); (C.G.); (D.d.A.R.R.); (B.D.); (J.L.d.C.); (L.H.); (N.N.)
| | - Marina Dias
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília 70910-900, Brazil; (N.D.); (M.D.); (A.R.); (N.G.); (A.M.); (M.W.); (C.G.); (D.d.A.R.R.); (B.D.); (J.L.d.C.); (L.H.); (N.N.)
| | - Andressa Ribeiro
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília 70910-900, Brazil; (N.D.); (M.D.); (A.R.); (N.G.); (A.M.); (M.W.); (C.G.); (D.d.A.R.R.); (B.D.); (J.L.d.C.); (L.H.); (N.N.)
| | - Nélio Gomes
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília 70910-900, Brazil; (N.D.); (M.D.); (A.R.); (N.G.); (A.M.); (M.W.); (C.G.); (D.d.A.R.R.); (B.D.); (J.L.d.C.); (L.H.); (N.N.)
| | - Aline Moraes
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília 70910-900, Brazil; (N.D.); (M.D.); (A.R.); (N.G.); (A.M.); (M.W.); (C.G.); (D.d.A.R.R.); (B.D.); (J.L.d.C.); (L.H.); (N.N.)
| | - Moisés Wesley
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília 70910-900, Brazil; (N.D.); (M.D.); (A.R.); (N.G.); (A.M.); (M.W.); (C.G.); (D.d.A.R.R.); (B.D.); (J.L.d.C.); (L.H.); (N.N.)
| | - Carlito Gonzaga
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília 70910-900, Brazil; (N.D.); (M.D.); (A.R.); (N.G.); (A.M.); (M.W.); (C.G.); (D.d.A.R.R.); (B.D.); (J.L.d.C.); (L.H.); (N.N.)
| | - Doralina do Amaral Rabello Ramos
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília 70910-900, Brazil; (N.D.); (M.D.); (A.R.); (N.G.); (A.M.); (M.W.); (C.G.); (D.d.A.R.R.); (B.D.); (J.L.d.C.); (L.H.); (N.N.)
| | - Shélida Braz
- Institute of Exact and Technological Sciences, Federal University of Amazonas, Manaus 69000-000, Brazil;
| | - Bruno Dallago
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília 70910-900, Brazil; (N.D.); (M.D.); (A.R.); (N.G.); (A.M.); (M.W.); (C.G.); (D.d.A.R.R.); (B.D.); (J.L.d.C.); (L.H.); (N.N.)
| | - Juliana Lott de Carvalho
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília 70910-900, Brazil; (N.D.); (M.D.); (A.R.); (N.G.); (A.M.); (M.W.); (C.G.); (D.d.A.R.R.); (B.D.); (J.L.d.C.); (L.H.); (N.N.)
| | - Luciana Hagström
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília 70910-900, Brazil; (N.D.); (M.D.); (A.R.); (N.G.); (A.M.); (M.W.); (C.G.); (D.d.A.R.R.); (B.D.); (J.L.d.C.); (L.H.); (N.N.)
| | - Nadjar Nitz
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília 70910-900, Brazil; (N.D.); (M.D.); (A.R.); (N.G.); (A.M.); (M.W.); (C.G.); (D.d.A.R.R.); (B.D.); (J.L.d.C.); (L.H.); (N.N.)
| | - Mariana Hecht
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília 70910-900, Brazil; (N.D.); (M.D.); (A.R.); (N.G.); (A.M.); (M.W.); (C.G.); (D.d.A.R.R.); (B.D.); (J.L.d.C.); (L.H.); (N.N.)
| |
Collapse
|
2
|
Liu B, Wang Y, Ma L, Chen G, Yang Z, Zhu M. CCL22 Induces the Polarization of Immature Dendritic Cells into Tolerogenic Dendritic Cells in Radiation-Induced Lung Injury through the CCR4-Dectin2-PLC-γ2-NFATC2-Nr4a2-PD-L1 Signaling Pathway. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:268-282. [PMID: 38856585 DOI: 10.4049/jimmunol.2300718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/20/2024] [Indexed: 06/11/2024]
Abstract
Recruitment of immune cells to the injury site plays a pivotal role in the pathology of radiation-associated diseases. In this study, we investigated the impact of the chemokine CCL22 released from alveolar type II epithelial (AT2) cells after irradiation on the recruitment and functional changes of dendritic cells (DCs) in the development of radiation-induced lung injury (RILI). By examining changes in CCL22 protein levels in lung tissue of C57BL/6N mice with RILI, we discovered that ionizing radiation increased CCL22 expression in irradiated alveolar AT2 cells, as did MLE-12 cells after irradiation. A transwell migration assay revealed that CCL22 promoted the migration of CCR4-positive DCs to the injury site, which explained the migration of pulmonary CCR4-positive DCs in RILI mice in vivo. Coculture experiments demonstrated that, consistent with the response of regulatory T cells in the lung tissue of RILI mice, exogenous CCL22-induced DCs promoted regulatory T cell proliferation. Mechanistically, we demonstrated that Dectin2 and Nr4a2 are key targets in the CCL22 signaling pathway, which was confirmed in pulmonary DCs of RILI mice. As a result, CCL22 upregulated the expression of PD-L1, IL-6, and IL-10 in DCs. Consequently, we identified a mechanism in which CCL22 induced DC tolerance through the CCR4-Dectin2-PLC-γ2-NFATC2-Nr4a2-PD-L1 pathway. Collectively, these findings demonstrated that ionizing radiation stimulates the expression of CCL22 in AT2 cells to recruit DCs to the injury site and further polarizes them into a tolerant subgroup of CCL22 DCs to regulate lung immunity, ultimately providing potential therapeutic targets for DC-mediated RILI.
Collapse
Affiliation(s)
- Benbo Liu
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yilong Wang
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Liping Ma
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Guo Chen
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Zhihua Yang
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Maoxiang Zhu
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
3
|
Choudhury QJ, Ambati S, Link CD, Lin X, Lewis ZA, Meagher RB. Dectin-3-targeted antifungal liposomes efficiently bind and kill diverse fungal pathogens. Mol Microbiol 2023; 120:723-739. [PMID: 37800599 PMCID: PMC10823756 DOI: 10.1111/mmi.15174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/22/2023] [Accepted: 09/21/2023] [Indexed: 10/07/2023]
Abstract
DectiSomes are anti-infective drug-loaded liposomes targeted to pathogenic cells by pathogen receptors including the Dectins. We have previously used C-type lectin (CTL) pathogen receptors Dectin-1, Dectin-2, and DC-SIGN to target DectiSomes to the extracellular oligoglycans surrounding diverse pathogenic fungi and kill them. Dectin-3 (also known as MCL, CLEC4D) is a CTL pathogen receptor whose known cognate ligands are partly distinct from other CTLs. We expressed and purified a truncated Dectin-3 polypeptide (DEC3) comprised of its carbohydrate recognition domain and stalk region. We prepared amphotericin B (AmB)-loaded pegylated liposomes (AmB-LLs) and coated them with this isoform of Dectin-3 (DEC3-AmB-LLs), and we prepared control liposomes coated with bovine serum albumin (BSA-AmB-LLs). DEC3-AmB-LLs bound to the exopolysaccharide matrices of Candida albicans, Rhizopus delemar (formerly known as R. oryzae), and Cryptococcus neoformans from one to several orders of magnitude more strongly than untargeted AmB-LLs or BSA-AmB-LLs. The data from our quantitative fluorescent binding assays were standardized using a CellProfiler program, AreaPipe, that was developed for this purpose. Consistent with enhanced binding, DEC3-AmB-LLs inhibited and/or killed C. albicans and R. delemar more efficiently than control liposomes and significantly reduced the effective dose of AmB. In conclusion, Dectin-3 targeting has the potential to advance our goal of building pan-antifungal DectiSomes.
Collapse
Affiliation(s)
| | - Suresh Ambati
- Department of GeneticsUniversity of GeorgiaAthensGeorgiaUSA
| | - Collin D. Link
- Department of MicrobiologyUniversity of GeorgiaAthensGeorgiaUSA
| | - Xiaorong Lin
- Department of MicrobiologyUniversity of GeorgiaAthensGeorgiaUSA
| | | | | |
Collapse
|
4
|
Cheng Y, Chen W, Xu J, Liu H, Chen T, Hu J. Genetic analysis of potential biomarkers and therapeutic targets in age-related hearing loss. Hear Res 2023; 439:108894. [PMID: 37844444 DOI: 10.1016/j.heares.2023.108894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/06/2023] [Accepted: 09/27/2023] [Indexed: 10/18/2023]
Abstract
Age-related hearing loss (ARHL) or presbycusis is the phenomenon of hearing loss due to the aging of auditory organs with age. It seriously affects the cognitive function and quality of life of the elderly. This study is based on comprehensive bioinformatic and machine learning methods to identify the critical genes of ARHL and explore its therapy targets and pathological mechanisms. The ARHL and normal samples were from GSE49543 datasets of the Gene Expression Omnibus (GEO) database. Weighted gene co-expression network analysis (WGCNA) was applied to obtain significant modules. The Limma R-package was used to identify differentially expressed genes (DEGs). The 15 common genes of the practical module and DEGs were screened. Functional enrichment analysis suggested that these genes were mainly associated with inflammation, immune response, and infection. Cytoscape software created the protein-protein interaction (PPI) layouts and cytoHubba, support vector machine-recursive feature elimination (SVM-RFE), and random forests (RF) algorithms screened hub genes. After validating the hub gene expressions in GSE6045 and GSE154833 datasets, Clec4n, Mpeg1, and Fcgr3 are highly expressed in ARHL and have higher diagnostic efficacy for ARHL, so they were identified as hub genes. In conclusion, Clec4n, Mpeg1, and Fcgr3 play essential roles in developing ARHL, and they might become vital targets in ARHL diagnosis and anti-inflammatory therapy.
Collapse
Affiliation(s)
- Yajing Cheng
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Wenjin Chen
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jia Xu
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Hang Liu
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Ting Chen
- Department of Neurology, Shenzhen Second People's Hospital, Shenzhen, China
| | - Jun Hu
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
5
|
Ishi S, Kanno E, Tanno H, Kurosaka S, Shoji M, Imai T, Yamaguchi K, Kotsugai K, Niiyama M, Kurachi H, Makabe F, Watanabe T, Sato K, Ishii K, Hara H, Imai Y, Kawakami K. Cutaneous wound healing promoted by topical administration of heat-killed Lactobacillus plantarum KB131 and possible contribution of CARD9-mediated signaling. Sci Rep 2023; 13:15917. [PMID: 37741861 PMCID: PMC10517988 DOI: 10.1038/s41598-023-42919-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/16/2023] [Indexed: 09/25/2023] Open
Abstract
Optimal conditions for wound healing require a smooth transition from the early stage of inflammation to proliferation, and during this time alternatively activated (M2) macrophages play a central role. Recently, heat-killed lactic acid bacteria (LAB), such as Lactobacillus plantarum (L. plantarum) have been reported as possible modulators affecting the immune responses in wound healing. However, how signaling molecules regulate this process after the administration of heat-killed LAB remains unclear. In this study, we examined the effect of heat-killed L. plantarum KB131 (KB131) administration on wound healing and the contribution of CARD9, which is an essential signaling adaptor molecule for NF-kB activation upon triggering through C-type lectin receptors, in the effects of this bacterium. We analyzed wound closure, histological findings, and inflammatory responses. We found that administration of KB131 accelerated wound closure, re-epithelialization, granulation area, CD31-positive vessels, and α-SMA-positive myofibroblast accumulated area, as well as the local infiltration of leukocytes. In particular, M2 macrophages were increased, in parallel with CCL5 synthesis. The acceleration of wound healing responses by KB131 was canceled in CARD9-knockout mice. These results indicate that the topical administration of KB131 accelerates wound healing, accompanying increased M2 macrophages, which suggests that CARD9 may be involved in these responses.
Collapse
Affiliation(s)
- Shinyo Ishi
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, Japan
| | - Emi Kanno
- Department of Translational Science for Nursing, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
| | - Hiromasa Tanno
- Department of Translational Science for Nursing, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Shiho Kurosaka
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, Japan
- Bio-Lab Co., Ltd, 2-1-3 Komagawa, Hidaka-shi, Japan
| | - Miki Shoji
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, Japan
| | - Toshiro Imai
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, Japan
| | - Kenji Yamaguchi
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, Japan
| | - Kanna Kotsugai
- Department of Translational Science for Nursing, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Momoko Niiyama
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, Japan
| | - Haruko Kurachi
- Department of Translational Science for Nursing, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Fuko Makabe
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, Japan
| | | | - Ko Sato
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, Japan
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, Japan
- Department of Clinical Microbiology and Infection, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, Japan
| | - Keiko Ishii
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, Japan
| | - Hiromitsu Hara
- Department of Immunology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yoshimichi Imai
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, Japan
| | - Kazuyoshi Kawakami
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, Japan
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, Japan
| |
Collapse
|
6
|
Fan X, Mai C, Zuo L, Huang J, Xie C, Jiang Z, Li R, Yao X, Fan X, Wu Q, Yan P, Liu L, Chen J, Xie Y, Leung ELH. Herbal formula BaWeiBaiDuSan alleviates polymicrobial sepsis-induced liver injury via increasing the gut microbiota Lactobacillus johnsonii and regulating macrophage anti-inflammatory activity in mice. Acta Pharm Sin B 2023; 13:1164-1179. [PMID: 36970196 PMCID: PMC10031256 DOI: 10.1016/j.apsb.2022.10.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/19/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Sepsis-induced liver injury (SILI) is an important cause of septicemia deaths. BaWeiBaiDuSan (BWBDS) was extracted from a formula of Panax ginseng C. A. Meyer, Lilium brownie F. E. Brown ex Miellez var. viridulum Baker, Polygonatum sibiricum Delar. ex Redoute, Lonicera japonica Thunb., Hippophae rhamnoides Linn., Amygdalus Communis Vas, Platycodon grandiflorus (Jacq.) A. DC., and Cortex Phelloderdri. Herein, we investigated whether the BWBDS treatment could reverse SILI by the mechanism of modulating gut microbiota. BWBDS protected mice against SILI, which was associated with promoting macrophage anti-inflammatory activity and enhancing intestinal integrity. BWBDS selectively promoted the growth of Lactobacillus johnsonii (L. johnsonii) in cecal ligation and puncture treated mice. Fecal microbiota transplantation treatment indicated that gut bacteria correlated with sepsis and was required for BWBDS anti-sepsis effects. Notably, L. johnsonii significantly reduced SILI by promoting macrophage anti-inflammatory activity, increasing interleukin-10+ M2 macrophage production and enhancing intestinal integrity. Furthermore, heat inactivation L. johnsonii (HI-L. johnsonii) treatment promoted macrophage anti-inflammatory activity and alleviated SILI. Our findings revealed BWBDS and gut microbiota L. johnsonii as novel prebiotic and probiotic that may be used to treat SILI. The potential underlying mechanism was at least in part, via L. johnsonii-dependent immune regulation and interleukin-10+ M2 macrophage production.
Collapse
Affiliation(s)
- Xiaoqing Fan
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Chutian Mai
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Ling Zuo
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jumin Huang
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Chun Xie
- Cancer Center, Faculty of Health Science; MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau 999078, China
| | - Zebo Jiang
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Runze Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou 510120, China
| | - Xiaojun Yao
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Xingxing Fan
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Qibiao Wu
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Peiyu Yan
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Liang Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou 510120, China
| | - Jianxin Chen
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ying Xie
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou 510120, China
| | - Elaine Lai-Han Leung
- Cancer Center, Faculty of Health Science; MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau 999078, China
| |
Collapse
|
7
|
Xu S, Xiong Y, Fu B, Guo D, Sha Z, Lin X, Wu H. Bacteria and macrophages in the tumor microenvironment. Front Microbiol 2023; 14:1115556. [PMID: 36825088 PMCID: PMC9941202 DOI: 10.3389/fmicb.2023.1115556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/12/2023] [Indexed: 02/10/2023] Open
Abstract
Cancer and microbial infections are significant worldwide health challenges. Numerous studies have demonstrated that bacteria may contribute to the emergence of cancer. In this review, we assemble bacterial species discovered in various cancers to describe their variety and specificity. The relationship between bacteria and macrophages in cancer is also highlighted, and we look for ample proof to establish a biological basis for bacterial-induced macrophage polarization. Finally, we quickly go over the potential roles of metabolites, cytokines, and microRNAs in the regulation of the tumor microenvironment by bacterially activated macrophages. The complexity of bacteria and macrophages in cancer will be revealed as we gain a better understanding of their pathogenic mechanisms, which will lead to new therapeutic approaches for both inflammatory illnesses and cancer.
Collapse
Affiliation(s)
| | | | - Beibei Fu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Dong Guo
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Zhou Sha
- School of Life Sciences, Chongqing University, Chongqing, China
| | | | | |
Collapse
|
8
|
Haider MJA, Albaqsumi Z, Al-Mulla F, Ahmad R, Al-Rashed F. SOCS3 Regulates Dectin-2-Induced Inflammation in PBMCs of Diabetic Patients. Cells 2022; 11:cells11172670. [PMID: 36078084 PMCID: PMC9454960 DOI: 10.3390/cells11172670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/13/2022] [Accepted: 08/23/2022] [Indexed: 12/15/2022] Open
Abstract
The C-type lectin receptors (CLRs) Dectin-1 and Dectin-2 are involved in several innate immune responses and are expressed mainly in dendritic cells, monocytes, and macrophages. Dectin-1 activation exacerbates obesity, inflammation, and insulin resistance/type 2 diabetes (T2D). However, the role of Dectin-2 is not clear in T2D. This study aims to evaluate the expression and function of Dectin-2 in peripheral blood mononuclear cells (PBMCs) isolated from diabetic patients and non-diabetic controls. Flow-cytometry and qRT-PCR were performed to evaluate the expression of Dectin-2 in different leukocyte subpopulations isolated from T2D patients (n = 10) and matched non-diabetic controls (n = 11). The functional activity of Dectin-2 was identified in PBMCs. CRP, IL-1β, and TNF-α concentrations were determined by ELISA. siRNA transfection and Western blotting were performed to assess p-Syk and p-NF-kB expression. siRNA transfection was performed to knock down the gene of interest. Our results show that Dectin-2 expression was the highest in monocytes compared with other leukocyte subpopulations. The expression of Dectin-2 was significantly increased in the monocytes of T2D patients compared with non-diabetic controls. Dectin-2 expression positively correlated with markers of glucose homeostasis, including HOMA-IR and HbA1c. The expression of inflammatory markers was elevated in the PBMCs of T2D patients. Interestingly, SOCS3, a negative regulator of inflammation, was expressed significantly lowlier in the PBMCs of T2D patients. Moreover, SOCS3 expression was negatively correlated with Dectin-2 expression level. The further analysis of inflammatory signaling pathways showed a persistent activation of the Dectin-2-Syk-NFkB pathway that was instigated by the diminished expression of SOCS3. Dectin-2 activation failed to induce SOCS3 expression and suppress subsequent inflammatory responses in the PBMCs of diabetic patients. siRNA-mediated knockdown of SOCS3 in PBMCs displayed a similar inflammatory phenotype to diabetic PBMCs when exposed to Dectin-2 ligands. Altogether, our findings suggest that elevated Dectin-2 and its relationship with SOCS3 could be involved in the abnormal immune response observed in T2D patients.
Collapse
Affiliation(s)
- Mohammed J. A. Haider
- Department of Biological Sciences, Faculty of Science, Kuwait University, P.O. Box 5969, Kuwait City 13060, Kuwait
| | - Zahraa Albaqsumi
- Immunology and Microbiology Department, Dasman Diabetes Institute, Al-Soor Street, P.O. Box 1180, Kuwait City 15462, Kuwait
| | - Fahd Al-Mulla
- Genetics & Bioinformatics, Dasman Diabetes Institute, Al-Soor Street, P.O. Box 1180, Kuwait City 15462, Kuwait
| | - Rasheed Ahmad
- Immunology and Microbiology Department, Dasman Diabetes Institute, Al-Soor Street, P.O. Box 1180, Kuwait City 15462, Kuwait
- Correspondence: (R.A.); (F.A.-R.); Tel.: +965-2224-2999 (ext. 3584) (R.A.); +965-2224-2999 (ext. 4335) (F.A.-R.)
| | - Fatema Al-Rashed
- Immunology and Microbiology Department, Dasman Diabetes Institute, Al-Soor Street, P.O. Box 1180, Kuwait City 15462, Kuwait
- Correspondence: (R.A.); (F.A.-R.); Tel.: +965-2224-2999 (ext. 3584) (R.A.); +965-2224-2999 (ext. 4335) (F.A.-R.)
| |
Collapse
|
9
|
Kojima N, Kojima S, Hosokawa S, Oda Y, Zenke D, Toura Y, Onohara E, Yokota SI, Nagaoka M, Kuroda Y. Wall teichoic acid-dependent phagocytosis of intact cell walls of Lactiplantibacillus plantarum elicits IL-12 secretion from macrophages. Front Microbiol 2022; 13:986396. [PMID: 36016797 PMCID: PMC9396385 DOI: 10.3389/fmicb.2022.986396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 07/27/2022] [Indexed: 12/02/2022] Open
Abstract
Selected lactic acid bacteria can stimulate macrophages and dendritic cells to secrete IL-12, which plays a key role in activating innate and cellular immunity. In this study, we investigated the roles of cell wall teichoic acids (WTAs) displayed on whole intact cell walls (ICWs) of Lactiplantibacillus plantarum in activation of mouse macrophages. ICWs were prepared from whole bacterial cells of several lactobacilli without physical disruption, and thus retaining the overall shapes of the bacteria. WTA-displaying ICWs of several L. plantarum strains, but not WTA-lacking ICWs of strains of other lactobacilli, elicited IL-12 secretion from mouse bone marrow-derived macrophages (BMMs) and mouse macrophage-like J774.1 cells. The ability of the ICWs of L. plantarum to induce IL-12 secretion was abolished by selective chemical elimination of WTAs from ICWs, but was preserved by selective removal of cell wall glycopolymers other than WTAs. BMMs prepared from TLR2- or TLR4-deficient mouse could secret IL-12 upon stimulation with ICWs of L. plantarum and a MyD88 dimerization inhibitor did not affect ICW-mediated IL-12 secretion. WTA-displaying ICWs, but not WTA-lacking ICWs, were ingested in the cells within 30 min. Treatment with inhibitors of actin polymerization abolished IL-12 secretion in response to ICW stimulation and diminished ingestion of ICWs. When overall shapes of ICWs of L. plantarum were physically disrupted, the disrupted ICWs (DCWs) failed to induce IL-12 secretion. However, DCWs and soluble WTAs inhibited ICW-mediated IL-12 secretion from macrophages. Taken together, these results show that WTA-displaying ICWs of L. plantarum can elicit IL-12 production from macrophages via actin-dependent phagocytosis but TLR2 signaling axis independent pathway. WTAs displayed on ICWs are key molecules in the elicitation of IL-12 secretion, and the sizes and shapes of the ICWs have an impact on actin remodeling and subsequent IL-12 production.
Collapse
Affiliation(s)
- Naoya Kojima
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Japan
- *Correspondence: Naoya Kojima,
| | - Shohei Kojima
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Japan
| | - Shin Hosokawa
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Japan
| | - Yoshiki Oda
- Technology Joint Management Office, Tokai University, Hiratsuka, Japan
| | - Daisuke Zenke
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Japan
| | - Yuta Toura
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Japan
| | - Emi Onohara
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Japan
| | - Shin-ichi Yokota
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | - Yasuhiro Kuroda
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Japan
| |
Collapse
|