1
|
Nógrádi B, Nógrádi-Halmi D, Erdélyi-Furka B, Kádár Z, Csont T, Gáspár R. Mechanism of motoneuronal and pyramidal cell death in amyotrophic lateral sclerosis and its potential therapeutic modulation. Cell Death Discov 2024; 10:291. [PMID: 38898006 PMCID: PMC11187107 DOI: 10.1038/s41420-024-02055-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder clinically characterized by muscle atrophy and progressive paralysis. Loss of motoneurons and pyramidal cells is thought to be the center piece of the complex and multifaceted ALS pathology, however, the exact mechanisms laying behind motoneuronal cell death in the spinal cord and motor cortex are still unknown. It was originally proposed that apoptosis plays a fundamental role in motoneuronal demise, nonetheless, later it became clear that other forms of regulated cell death, including necroptosis, pyroptosis, ferroptosis, and autophagy-dependent cell death, may also contribute to motoneuron loss. Over the past years, multiple studies aimed to improve our understanding of the contributory role of these mechanisms as well as to offer novel targets for potential therapeutic interventions. The pharmacological inhibition of the ferroptotic pathway and the modulation of the autophagic machinery seem to have particularly promising effects, reducing motoneuron loss and slowing disease progression in transgenic models of ALS. Nevertheless, the potential beneficial effects of necroptosis-targeting interventions were mostly disproven in the latest studies. In this review we aim to summarize the current view on regulated cell death mechanisms that lead to motoneuronal and pyramidal cell degeneration in ALS and showcase their applicability as future drug targets.
Collapse
Affiliation(s)
- Bernát Nógrádi
- Department of Neurology, Albert Szent-Györgyi Health Centre, University of Szeged, Szeged, Hungary
- Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh, UK
| | - Dóra Nógrádi-Halmi
- Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- Interdisciplinary Centre of Excellence, University of Szeged, Szeged, Hungary
| | - Barbara Erdélyi-Furka
- Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- Interdisciplinary Centre of Excellence, University of Szeged, Szeged, Hungary
| | - Zalán Kádár
- Department of Anatomy, Histology and Embryology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Tamás Csont
- Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- Interdisciplinary Centre of Excellence, University of Szeged, Szeged, Hungary
| | - Renáta Gáspár
- Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary.
- Interdisciplinary Centre of Excellence, University of Szeged, Szeged, Hungary.
| |
Collapse
|
2
|
Zhou Z, Liu J, Xiong T, Liu Y, Tuan RS, Li ZA. Engineering Innervated Musculoskeletal Tissues for Regenerative Orthopedics and Disease Modeling. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310614. [PMID: 38200684 DOI: 10.1002/smll.202310614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/28/2023] [Indexed: 01/12/2024]
Abstract
Musculoskeletal (MSK) disorders significantly burden patients and society, resulting in high healthcare costs and productivity loss. These disorders are the leading cause of physical disability, and their prevalence is expected to increase as sedentary lifestyles become common and the global population of the elderly increases. Proper innervation is critical to maintaining MSK function, and nerve damage or dysfunction underlies various MSK disorders, underscoring the potential of restoring nerve function in MSK disorder treatment. However, most MSK tissue engineering strategies have overlooked the significance of innervation. This review first expounds upon innervation in the MSK system and its importance in maintaining MSK homeostasis and functions. This will be followed by strategies for engineering MSK tissues that induce post-implantation in situ innervation or are pre-innervated. Subsequently, research progress in modeling MSK disorders using innervated MSK organoids and organs-on-chips (OoCs) is analyzed. Finally, the future development of engineering innervated MSK tissues to treat MSK disorders and recapitulate disease mechanisms is discussed. This review provides valuable insights into the underlying principles, engineering methods, and applications of innervated MSK tissues, paving the way for the development of targeted, efficacious therapies for various MSK conditions.
Collapse
Affiliation(s)
- Zhilong Zhou
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
| | - Jun Liu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, NT, Hong Kong SAR, P. R. China
| | - Tiandi Xiong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, NT, Hong Kong SAR, P. R. China
| | - Yuwei Liu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518000, P. R. China
| | - Rocky S Tuan
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, NT, Hong Kong SAR, P. R. China
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
| | - Zhong Alan Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, NT, Hong Kong SAR, P. R. China
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Key Laboratory of Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518057, P. R. China
| |
Collapse
|
3
|
Li L, Lei T, Xing C, Du H. Advances in microfluidic chips targeting toxic aggregation proteins for neurodegenerative diseases. Int J Biol Macromol 2024; 256:128308. [PMID: 37992921 DOI: 10.1016/j.ijbiomac.2023.128308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/10/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023]
Abstract
Neurodegenerative diseases (NDs) are characterized by nervous system damage, often influenced by genetic and aging factors. Pathological analysis frequently reveals the presence of aggregated toxic proteins. The intricate and poorly understood origins of these diseases have hindered progress in early diagnosis and drug development. The development of novel in-vitro and in-vivo models could enhance our comprehension of ND mechanisms and facilitate clinical treatment advancements. Microfluidic chips are employed to establish three-dimensional culture conditions, replicating the human ecological niche and creating a microenvironment conducive to neuronal cell survival. The incorporation of mechatronic controls unifies the chip, cells, and culture medium optimizing living conditions for the cells. This study provides a comprehensive overview of microfluidic chip applications in drug and biomarker screening for neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, and amyotrophic lateral sclerosis. Our Lab-on-a-Chip system releases toxic proteins to simulate the pathological characteristics of neurodegenerative diseases, encompassing β-amyloid, α-synuclein, huntingtin, TAR DNA-binding protein 43, and Myelin Basic Protein. Investigating molecular and cellular interactions in vitro can enhance our understanding of disease mechanisms while minimizing harmful protein levels and can aid in screening potential therapeutic agents. We anticipate that our research will promote the utilization of microfluidic chips in both fundamental research and clinical applications for neurodegenerative diseases.
Collapse
Affiliation(s)
- Liang Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
| | - Tong Lei
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
| | - Cencan Xing
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China.
| | - Hongwu Du
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
4
|
Mandrioli J, D'Amico R, Zucchi E, De Biasi S, Banchelli F, Martinelli I, Simonini C, Lo Tartaro D, Vicini R, Fini N, Gianferrari G, Pinti M, Lunetta C, Gerardi F, Tarlarini C, Mazzini L, De Marchi F, Scognamiglio A, Sorarù G, Fortuna A, Lauria G, Bella ED, Caponnetto C, Meo G, Chio A, Calvo A, Cossarizza A. Randomized, double-blind, placebo-controlled trial of rapamycin in amyotrophic lateral sclerosis. Nat Commun 2023; 14:4970. [PMID: 37591957 PMCID: PMC10435464 DOI: 10.1038/s41467-023-40734-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/31/2023] [Indexed: 08/19/2023] Open
Abstract
In preclinical studies rapamycin was found to target neuroinflammation, by expanding regulatory T cells, and affecting autophagy, two pillars of amyotrophic lateral sclerosis (ALS) pathogenesis. Herein we report a multicenter, randomized, double-blind trial, in 63 ALS patients who were randomly assigned in a 1:1:1 ratio to receive rapamycin 2 mg/m2/day,1 mg/m2/day or placebo (EUDRACT 2016-002399-28; NCT03359538). The primary outcome, the number of patients exhibiting an increase >30% in regulatory T cells from baseline to treatment end, was not attained. Secondary outcomes were changes from baseline of T, B, NK cell subpopulations, inflammasome mRNA expression and activation status, S6-ribosomal protein phosphorylation, neurofilaments; clinical outcome measures of disease progression; survival; safety and quality of life. Of the secondary outcomes, rapamycin decreased mRNA relative expression of the pro-inflammatory cytokine IL-18, reduced plasmatic IL-18 protein, and increased the percentage of classical monocytes and memory switched B cells, although no corrections were applied for multiple tests. In conclusion, we show that rapamycin treatment is well tolerated and provides reassuring safety findings in ALS patients, but further trials are necessary to understand the biological and clinical effects of this drug in ALS.
Collapse
Affiliation(s)
- Jessica Mandrioli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.
- Department of Neurosciences, St. Agostino-Estense Hospital, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy.
| | - Roberto D'Amico
- Unit of Statistical and Methodological Support to Clinical Research, Azienda Ospedaliero-Universitaria, Modena, Italy
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Elisabetta Zucchi
- Department of Neurosciences, St. Agostino-Estense Hospital, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
- Neurosciences PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Federico Banchelli
- Unit of Statistical and Methodological Support to Clinical Research, Azienda Ospedaliero-Universitaria, Modena, Italy
| | - Ilaria Martinelli
- Department of Neurosciences, St. Agostino-Estense Hospital, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Cecilia Simonini
- Department of Neurosciences, St. Agostino-Estense Hospital, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Domenico Lo Tartaro
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Roberto Vicini
- Unit of Statistical and Methodological Support to Clinical Research, Azienda Ospedaliero-Universitaria, Modena, Italy
| | - Nicola Fini
- Department of Neurosciences, St. Agostino-Estense Hospital, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Giulia Gianferrari
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Department of Neurosciences, St. Agostino-Estense Hospital, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Christian Lunetta
- NEuroMuscular Omnicenter, Serena Onlus Foundation, Milan, Italy
- Istituto Maugeri IRCCS Milano, Milan, Italy
| | | | | | - Letizia Mazzini
- ALS Centre, Neurologic Clinic, Maggiore della Carità University Hospital, Novara, Italy
| | - Fabiola De Marchi
- ALS Centre, Neurologic Clinic, Maggiore della Carità University Hospital, Novara, Italy
| | - Ada Scognamiglio
- ALS Centre, Neurologic Clinic, Maggiore della Carità University Hospital, Novara, Italy
| | - Gianni Sorarù
- Department of Neurosciences, University of Padua, Padua, Italy
- Centro Regionale Specializzato Malattie del Motoneurone, Azienda Ospedale Università di Padova, Padua, Italy
| | - Andrea Fortuna
- Department of Neurosciences, University of Padua, Padua, Italy
| | - Giuseppe Lauria
- 3rd Neurology Unit and ALS Centre, IRCCS 'Carlo Besta' Neurological Institute, Milan, Italy
| | - Eleonora Dalla Bella
- 3rd Neurology Unit and ALS Centre, IRCCS 'Carlo Besta' Neurological Institute, Milan, Italy
| | - Claudia Caponnetto
- Department of Neurosciences, Rehabilitatioņ Ophthalmology, Genetics, Mother and Child Disease, Ospedale Policlinico San Martino, Genova, Italy
| | - Giuseppe Meo
- Department of Neurosciences, Rehabilitatioņ Ophthalmology, Genetics, Mother and Child Disease, Ospedale Policlinico San Martino, Genova, Italy
| | - Adriano Chio
- 'Rita Levi Montalcini' Department of Neurosciences, ALS Centre, University of Turin and Azienda Ospedaliero Universitaria Città della Salute e della Scienza, Turin, Italy
| | - Andrea Calvo
- 'Rita Levi Montalcini' Department of Neurosciences, ALS Centre, University of Turin and Azienda Ospedaliero Universitaria Città della Salute e della Scienza, Turin, Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
- National Institute for Cardiovascular Research, via Irnerio 48, 40126, Bologna, Italy
| |
Collapse
|
5
|
Buchner F, Dokuzluoglu Z, Grass T, Rodriguez-Muela N. Spinal Cord Organoids to Study Motor Neuron Development and Disease. Life (Basel) 2023; 13:1254. [PMID: 37374039 PMCID: PMC10303776 DOI: 10.3390/life13061254] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
Motor neuron diseases (MNDs) are a heterogeneous group of disorders that affect the cranial and/or spinal motor neurons (spMNs), spinal sensory neurons and the muscular system. Although they have been investigated for decades, we still lack a comprehensive understanding of the underlying molecular mechanisms; and therefore, efficacious therapies are scarce. Model organisms and relatively simple two-dimensional cell culture systems have been instrumental in our current knowledge of neuromuscular disease pathology; however, in the recent years, human 3D in vitro models have transformed the disease-modeling landscape. While cerebral organoids have been pursued the most, interest in spinal cord organoids (SCOs) is now also increasing. Pluripotent stem cell (PSC)-based protocols to generate SpC-like structures, sometimes including the adjacent mesoderm and derived skeletal muscle, are constantly being refined and applied to study early human neuromuscular development and disease. In this review, we outline the evolution of human PSC-derived models for generating spMN and recapitulating SpC development. We also discuss how these models have been applied to exploring the basis of human neurodevelopmental and neurodegenerative diseases. Finally, we provide an overview of the main challenges to overcome in order to generate more physiologically relevant human SpC models and propose some exciting new perspectives.
Collapse
Affiliation(s)
- Felix Buchner
- German Center for Neurodegenerative Diseases, 01307 Dresden, Germany; (F.B.); (Z.D.); (T.G.)
| | - Zeynep Dokuzluoglu
- German Center for Neurodegenerative Diseases, 01307 Dresden, Germany; (F.B.); (Z.D.); (T.G.)
| | - Tobias Grass
- German Center for Neurodegenerative Diseases, 01307 Dresden, Germany; (F.B.); (Z.D.); (T.G.)
| | - Natalia Rodriguez-Muela
- German Center for Neurodegenerative Diseases, 01307 Dresden, Germany; (F.B.); (Z.D.); (T.G.)
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany
- Max Planck Institute for Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| |
Collapse
|
6
|
Martinez-Gonzalez L, Martinez A. Emerging clinical investigational drugs for the treatment of amyotrophic lateral sclerosis. Expert Opin Investig Drugs 2023; 32:141-160. [PMID: 36762798 DOI: 10.1080/13543784.2023.2178416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder caused by motoneuron death with a median survival time of 3-5 years since disease onset. There are no effective treatments to date. However, a variety of innovative investigational drugs and biological-based therapies are under clinical development. AREAS COVERED This review provides an overview of the clinical investigational small molecules as well as a brief summary of the biological-based therapies that are currently undergoing clinical trials for the treatment of ALS. All the data were obtained from ClinicalTrials.gov (registered through November 1). EXPERT OPINION Drug discovery for ALS is an active and evolving field, where many investigational clinical drugs are in different trials. There are several mechanisms of action supporting all these new therapies, although proteostasis is gaining stage. Probably, small orally bioavailable molecules able to recover functional TDP-43 homeostasis may have solid chances to modify ALS progression.
Collapse
Affiliation(s)
- Loreto Martinez-Gonzalez
- Centro de Investigaciones Biológicas "Margarita Salas"-CSIC, Madrid, Spain.,Centro de Investigación Biomédica en Red en enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Martinez
- Centro de Investigaciones Biológicas "Margarita Salas"-CSIC, Madrid, Spain.,Centro de Investigación Biomédica en Red en enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
7
|
Gomes NA, Lima e Silva FDC, de Oliveira Volpe CM, Villar-Delfino PH, de Sousa CF, Rocha-Silva F, Nogueira-Machado JA. Overexpression of mTOR in Leukocytes from ALS8 Patients. Curr Neuropharmacol 2023; 21:482-490. [PMID: 36722478 PMCID: PMC10207909 DOI: 10.2174/1570159x21666230201151016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The mutated VAPBP56S (vesicle B associated membrane protein - P56S) protein has been described in a Brazilian family and classified as Amyotrophic Lateral Sclerosis type 8 (ALS8). OBJECTIVE We aimed to study altered biochemical and immunological parameters in cells from ALS8 patients to identify possible biomarkers or therapeutic targets. METHODS Wild-type VAPB, VAPBP56S, mTOR, proinflammatory cytokines, and oxidant/reducing levels in serum, leucocytes, and cellular lysate from ALS8 patients and health Controls were performed by ELISA, fluorimetry, and spectrophotometry. RESULTS Our results showed similar levels of mutant and wild-type VAPB in serum and intracellular lysate (p > 0.05) when ALS8 patients and Controls were compared. IL-1β, IL-6, and IL-18 levels in patients and Controls showed no difference, suggesting an absence of peripheral inflammation (p > 0.05). Oxidative metabolic response, assessed by mitochondrial ROS production, and reductive response by MTT reduction, were higher in the ALS8 group compared to Controls (p < 0.05), although not characterizing typical oxidative stress in ALS8 patients. Total mTOR levels (phosphorylated or non-phosphorylated) of ALS8 patients were significantly lower in serum and higher in intracellular lysate than the mean equivalents in Controls (p < 0.05). A similar result was observed when we quantified the phosphorylated protein (p < 0.05). CONCLUSION We demonstrate the possibility of using these biochemical and immunological parameters as potential therapeutic targets or biomarkers. Furthermore, by hypothesis, we suggest a hormetic response in which both VAPB forms could coexist in different proportions throughout life. The mutated VAPBP56S production would increase with aging and predominate over the wild-type VAPB levels, determining the onset of symptoms and aggravating the disease.
Collapse
Affiliation(s)
- Nathália Augusta Gomes
- Programa de Pós-Graduação Stricto Sensu em Medicina/Biomedicina, Faculdade Santa Casa de BH, Belo Horizonte, Minas Gerais, Brazil
| | | | - Caroline Maria de Oliveira Volpe
- Programa de Pós-Graduação Stricto Sensu em Medicina/Biomedicina, Faculdade Santa Casa de BH, Belo Horizonte, Minas Gerais, Brazil
| | - Pedro Henrique Villar-Delfino
- Programa de Pós-Graduação Stricto Sensu em Medicina/Biomedicina, Faculdade Santa Casa de BH, Belo Horizonte, Minas Gerais, Brazil
| | - Camila Ferreira de Sousa
- Programa de Pós-Graduação Stricto Sensu em Medicina/Biomedicina, Faculdade Santa Casa de BH, Belo Horizonte, Minas Gerais, Brazil
| | - Fabiana Rocha-Silva
- Programa de Pós-Graduação Stricto Sensu em Medicina/Biomedicina, Faculdade Santa Casa de BH, Belo Horizonte, Minas Gerais, Brazil
| | - José Augusto Nogueira-Machado
- Programa de Pós-Graduação Stricto Sensu em Medicina/Biomedicina, Faculdade Santa Casa de BH, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
8
|
FDA-Approved Kinase Inhibitors in Preclinical and Clinical Trials for Neurological Disorders. Pharmaceuticals (Basel) 2022; 15:ph15121546. [PMID: 36558997 PMCID: PMC9784968 DOI: 10.3390/ph15121546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Cancers and neurological disorders are two major types of diseases. We previously developed a new concept termed "Aberrant Cell Cycle Diseases" (ACCD), revealing that these two diseases share a common mechanism of aberrant cell cycle re-entry. The aberrant cell cycle re-entry is manifested as kinase/oncogene activation and tumor suppressor inactivation, which are hallmarks of both tumor growth in cancers and neuronal death in neurological disorders. Therefore, some cancer therapies (e.g., kinase inhibition, tumor suppressor elevation) can be leveraged for neurological treatments. The United States Food and Drug Administration (US FDA) has so far approved 74 kinase inhibitors, with numerous other kinase inhibitors in clinical trials, mostly for the treatment of cancers. In contrast, there are dire unmet needs of FDA-approved drugs for neurological treatments, such as Alzheimer's disease (AD), intracerebral hemorrhage (ICH), ischemic stroke (IS), traumatic brain injury (TBI), and others. In this review, we list these 74 FDA-approved kinase-targeted drugs and identify those that have been reported in preclinical and/or clinical trials for neurological disorders, with a purpose of discussing the feasibility and applicability of leveraging these cancer drugs (FDA-approved kinase inhibitors) for neurological treatments.
Collapse
|
9
|
Yoshikawa S, Taniguchi K, Sawamura H, Ikeda Y, Tsuji A, Matsuda S. Potential Diets to Improve Mitochondrial Activity in Amyotrophic Lateral Sclerosis. Diseases 2022; 10:diseases10040117. [PMID: 36547203 PMCID: PMC9777491 DOI: 10.3390/diseases10040117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/20/2022] [Accepted: 11/30/2022] [Indexed: 12/02/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease, the pathogenesis of which is based on alternations in the mitochondria of motor neurons, causing their progressive death. A growing body of evidence shows that more efficient mitophagy could prevent and/or treat this disorder by suppressing mitochondrial dysfunction-induced oxidative stress and inflammation. Mitophagy has been considered one of the main mechanisms responsible for mitochondrial quality control. Since ALS is characterized by enormous oxidative stress, several edible phytochemicals that can activate mitophagy to remove damaged mitochondria could be considered a promising option to treat ALS by providing neuroprotection. Therefore, it is of great significance to explore the mechanisms of mitophagy in ALS and to understand the effects and/or molecular mechanisms of phytochemical action, which could translate into a treatment for neurodegenerative diseases, including ALS.
Collapse
|
10
|
Valle NME, Nucci MP, Alves AH, Rodrigues LD, Mamani JB, Oliveira FA, Lopes CS, Lopes AT, Carreño MNP, Gamarra LF. Advances in Concentration Gradient Generation Approaches in a Microfluidic Device for Toxicity Analysis. Cells 2022; 11:cells11193101. [PMID: 36231063 PMCID: PMC9563958 DOI: 10.3390/cells11193101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/24/2022] Open
Abstract
This systematic review aimed to analyze the development and functionality of microfluidic concentration gradient generators (CGGs) for toxicological evaluation of different biological organisms. We searched articles using the keywords: concentration gradient generator, toxicity, and microfluidic device. Only 33 of the 352 articles found were included and examined regarding the fabrication of the microdevices, the characteristics of the CGG, the biological model, and the desired results. The main fabrication method was soft lithography, using polydimethylsiloxane (PDMS) material (91%) and SU-8 as the mold (58.3%). New technologies were applied to minimize shear and bubble problems, reduce costs, and accelerate prototyping. The Christmas tree CGG design and its variations were the most reported in the studies, as well as the convective method of generation (61%). Biological models included bacteria and nematodes for antibiotic screening, microalgae for pollutant toxicity, tumor and normal cells for, primarily, chemotherapy screening, and Zebrafish embryos for drug and metal developmental toxicity. The toxic effects of each concentration generated were evaluated mostly with imaging and microscopy techniques. This study showed an advantage of CGGs over other techniques and their applicability for several biological models. Even with soft lithography, PDMS, and Christmas tree being more popular in their respective categories, current studies aim to apply new technologies and intricate architectures to improve testing effectiveness and reduce common microfluidics problems, allowing for high applicability of toxicity tests in different medical and environmental models.
Collapse
Affiliation(s)
- Nicole M. E. Valle
- Hospital Israelita Albert Einstein, São Paulo 05652-000, Brazil
- Pontifícia Universidade Católica de São Paulo, São Paulo 01303-050, Brazil
| | - Mariana P. Nucci
- Hospital Israelita Albert Einstein, São Paulo 05652-000, Brazil
- LIM44—Hospital das Clínicas da Faculdade Medicina da Universidade de São Paulo, São Paulo 05403-000, Brazil
| | | | | | | | | | - Caique S. Lopes
- Pontifícia Universidade Católica de São Paulo, São Paulo 01303-050, Brazil
| | - Alexandre T. Lopes
- Departamento de Engenharia de Sistema Eletrônicos, Escola Politécnica, Universidade de São Paulo, São Paulo 05508-010, Brazil
| | - Marcelo N. P. Carreño
- Departamento de Engenharia de Sistema Eletrônicos, Escola Politécnica, Universidade de São Paulo, São Paulo 05508-010, Brazil
| | - Lionel F. Gamarra
- Hospital Israelita Albert Einstein, São Paulo 05652-000, Brazil
- Pontifícia Universidade Católica de São Paulo, São Paulo 01303-050, Brazil
- Correspondence: ; Tel.: +55-11-2151-0243
| |
Collapse
|
11
|
Amorós MA, Choi ES, Cofré AR, Dokholyan NV, Duzzioni M. Motor neuron-derived induced pluripotent stem cells as a drug screening platform for amyotrophic lateral sclerosis. Front Cell Dev Biol 2022; 10:962881. [PMID: 36105357 PMCID: PMC9467621 DOI: 10.3389/fcell.2022.962881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
The development of cell culture models that recapitulate the etiology and features of nervous system diseases is central to the discovery of new drugs and their translation onto therapies. Neuronal tissues are inaccessible due to skeletal constraints and the invasiveness of the procedure to obtain them. Thus, the emergence of induced pluripotent stem cell (iPSC) technology offers the opportunity to model different neuronal pathologies. Our focus centers on iPSCs derived from amyotrophic lateral sclerosis (ALS) patients, whose pathology remains in urgent need of new drugs and treatment. In this sense, we aim to revise the process to obtain motor neurons derived iPSCs (iPSC-MNs) from patients with ALS as a drug screening model, review current 3D-models and offer a perspective on bioinformatics as a powerful tool that can aid in the progress of finding new pharmacological treatments.
Collapse
Affiliation(s)
- Mariana A. Amorós
- Laboratory of Pharmacological Innovation, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Esther S. Choi
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| | - Axel R. Cofré
- Laboratory of Pharmacological Innovation, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Nikolay V. Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, United States
| | - Marcelo Duzzioni
- Laboratory of Pharmacological Innovation, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió, Alagoas, Brazil
| |
Collapse
|
12
|
Arjmand B, Kokabi Hamidpour S, Rabbani Z, Tayanloo-Beik A, Rahim F, Aghayan HR, Larijani B. Organ on a Chip: A Novel in vitro Biomimetic Strategy in Amyotrophic Lateral Sclerosis (ALS) Modeling. Front Neurol 2022; 12:788462. [PMID: 35111126 PMCID: PMC8802668 DOI: 10.3389/fneur.2021.788462] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/20/2021] [Indexed: 12/20/2022] Open
Abstract
Amyotrophic lateral sclerosis is a pernicious neurodegenerative disorder that is associated with the progressive degeneration of motor neurons, the disruption of impulse transmission from motor neurons to muscle cells, and the development of mobility impairments. Clinically, muscle paralysis can spread to other parts of the body. Hence it may have adverse effects on swallowing, speaking, and even breathing, which serves as major problems facing these patients. According to the available evidence, no definite treatment has been found for amyotrophic lateral sclerosis (ALS) that results in a significant outcome, although some pharmacological and non-pharmacological treatments are currently applied that are accompanied by some positive effects. In other words, available therapies are only used to relieve symptoms without any significant treatment effects that highlight the importance of seeking more novel therapies. Unfortunately, the process of discovering new drugs with high therapeutic potential for ALS treatment is fraught with challenges. The lack of a broad view of the disease process from early to late-stage and insufficiency of preclinical studies for providing validated results prior to conducting clinical trials are other reasons for the ALS drug discovery failure. However, increasing the combined application of different fields of regenerative medicine, especially tissue engineering and stem cell therapy can be considered as a step forward to develop more novel technologies. For instance, organ on a chip is one of these technologies that can provide a platform to promote a comprehensive understanding of neuromuscular junction biology and screen candidate drugs for ALS in combination with pluripotent stem cells (PSCs). The structure of this technology is based on the use of essential components such as iPSC- derived motor neurons and iPSC-derived skeletal muscle cells on a single miniaturized chip for ALS modeling. Accordingly, an organ on a chip not only can mimic ALS complexities but also can be considered as a more cost-effective and time-saving disease modeling platform in comparison with others. Hence, it can be concluded that lab on a chip can make a major contribution as a biomimetic micro-physiological system in the treatment of neurodegenerative disorders such as ALS.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Babak Arjmand
| | - Shayesteh Kokabi Hamidpour
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Rabbani
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fakher Rahim
- Health Research Institute, Thalassemia, and Hemoglobinopathies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hamid Reza Aghayan
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Bagher Larijani
| |
Collapse
|