1
|
Bauso LV, La Fauci V, Munaò S, Bonfiglio D, Armeli A, Maimone N, Longo C, Calabrese G. Biological Activity of Natural and Synthetic Peptides as Anticancer Agents. Int J Mol Sci 2024; 25:7264. [PMID: 39000371 PMCID: PMC11242495 DOI: 10.3390/ijms25137264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Cancer is one of the leading causes of morbidity and death worldwide, making it a serious global health concern. Chemotherapy, radiotherapy, and surgical treatment are the most used conventional therapeutic approaches, although they show several side effects that limit their effectiveness. For these reasons, the discovery of new effective alternative therapies still represents an enormous challenge for the treatment of tumour diseases. Recently, anticancer peptides (ACPs) have gained attention for cancer diagnosis and treatment. ACPs are small bioactive molecules which selectively induce cancer cell death through a variety of mechanisms such as apoptosis, membrane disruption, DNA damage, immunomodulation, as well as inhibition of angiogenesis, cell survival, and proliferation pathways. ACPs can also be employed for the targeted delivery of drugs into cancer cells. With over 1000 clinical trials using ACPs, their potential for application in cancer therapy seems promising. Peptides can also be utilized in conjunction with imaging agents and molecular imaging methods, such as MRI, PET, CT, and NIR, improving the detection and the classification of cancer, and monitoring the treatment response. In this review we will provide an overview of the biological activity of some natural and synthetic peptides for the treatment of the most common and malignant tumours affecting people around the world.
Collapse
Affiliation(s)
- Luana Vittoria Bauso
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98168 Messina, Italy
| | - Valeria La Fauci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98168 Messina, Italy
| | - Serena Munaò
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98168 Messina, Italy
| | - Desirèe Bonfiglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98168 Messina, Italy
| | - Alessandra Armeli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98168 Messina, Italy
| | - Noemi Maimone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98168 Messina, Italy
| | - Clelia Longo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98168 Messina, Italy
| | - Giovanna Calabrese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98168 Messina, Italy
| |
Collapse
|
2
|
An J, Tsopmejio ISN, Wang Z, Li W. Review on Extraction, Modification, and Synthesis of Natural Peptides and Their Beneficial Effects on Skin. Molecules 2023; 28:molecules28020908. [PMID: 36677965 PMCID: PMC9863410 DOI: 10.3390/molecules28020908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
Peptides, functional nutrients with a size between those of large proteins and small amino acids, are easily absorbed by the human body. Therefore, they are seeing increasing use in clinical medicine and have revealed immunomodulatory and anti-inflammatory properties which could make them effective in healing skin wounds. This review sorted and summarized the relevant literature about peptides during the past decade. Recent works on the extraction, modification and synthesis of peptides were reviewed. Importantly, the unique beneficial effects of peptides on the skin were extensively explored, providing ideas for the development and innovation of peptides and laying a knowledge foundation for the clinical application of peptides.
Collapse
Affiliation(s)
- Jiabing An
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | | | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (Z.W.); (W.L.); Tel./Fax: +86-431-84533304 (W.L.)
| | - Wei Li
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (Z.W.); (W.L.); Tel./Fax: +86-431-84533304 (W.L.)
| |
Collapse
|
3
|
Lu F, Zhu Y, Zhang G, Liu Z. Renovation as innovation: Repurposing human antibacterial peptide LL-37 for cancer therapy. Front Pharmacol 2022; 13:944147. [PMID: 36081952 PMCID: PMC9445486 DOI: 10.3389/fphar.2022.944147] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/22/2022] [Indexed: 01/10/2023] Open
Abstract
In many organisms, antimicrobial peptides (AMPs) display wide activities in innate host defense against microbial pathogens. Mammalian AMPs include the cathelicidin and defensin families. LL37 is the only one member of the cathelicidin family of host defense peptides expressed in humans. Since its discovery, it has become clear that they have pleiotropic effects. In addition to its antibacterial properties, many studies have shown that LL37 is also involved in a wide variety of biological activities, including tissue repair, inflammatory responses, hemotaxis, and chemokine induction. Moreover, recent studies suggest that LL37 exhibits the intricate and contradictory effects in promoting or inhibiting tumor growth. Indeed, an increasing amount of evidence suggests that human LL37 including its fragments and analogs shows anticancer effects on many kinds of cancer cell lines, although LL37 is also involved in cancer progression. Focusing on recent information, in this review, we explore and summarize how LL37 contributes to anticancer effect as well as discuss the strategies to enhance delivery of this peptide and selectivity for cancer cells.
Collapse
|
4
|
Yang Q, Yan R, Mo Y, Xia H, Deng H, Wang X, Li C, Kato K, Zhang H, Jin T, Zhang J, An Y. The Potential Key Role of the NRF2/NQO1 Pathway in the Health Effects of Arsenic Pollution on SCC. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19138118. [PMID: 35805773 PMCID: PMC9265438 DOI: 10.3390/ijerph19138118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 02/05/2023]
Abstract
Arsenic is widely present in nature and is a common environmental poison that seriously damages human health. Chronic exposure to arsenic is a major environmental poisoning factor that promotes cell proliferation and leads to malignant transformation. However, its molecular mechanism remains unclear. In this study, we found that arsenite can promote the transformation of immortalized human keratinocyte cells (HaCaT) from the G0/G1 phase to S phase and demonstrated malignant phenotypes. This phenomenon is accompanied by obviously elevated levels of NRF2, NQO1, Cyclin E, and Cyclin-dependent kinase 2 (CDK2). Silencing the NRF2 expression with small interfering RNA (siRNA) in arsenite-transformed (T-HaCaT) cells was shown to reverse the malignant phenotype. Furthermore, the siRNA silencing of NQO1 significantly decreased the levels of the cyclin E-CDK2 complex, inhibiting the G0/G1 to S phase cell cycle progression and transformation to the T-HaCaT phenotypes. Thus, we hypothesized that the NRF2/NQO1 pathway played a key role in the arsenite-induced malignancy of HaCaT cells. By increasing the expression of Cyclin E-CDK2, the NRF2/NQO1 pathway can affect cell cycle progression and cell proliferation. A new common health effect mechanism of arsenic carcinogenesis has been identified; thus, it would contribute to the development of novel treatments to prevent and treat skin cancer caused by arsenic.
Collapse
Affiliation(s)
- Qianlei Yang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, China; (Q.Y.); (R.Y.); (H.X.); (X.W.); (J.Z.)
| | - Rui Yan
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, China; (Q.Y.); (R.Y.); (H.X.); (X.W.); (J.Z.)
| | - Yuemei Mo
- Physical Examination Department, Center for Disease Control and Prevention of Suzhou Industrial Park, Suzhou 215100, China;
| | - Haixuan Xia
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, China; (Q.Y.); (R.Y.); (H.X.); (X.W.); (J.Z.)
| | - Hanyi Deng
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China;
| | - Xiaojuan Wang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, China; (Q.Y.); (R.Y.); (H.X.); (X.W.); (J.Z.)
| | - Chunchun Li
- Changzhou Wujin District Center for Disease Control and Prevention, Changzhou 213164, China;
| | - Koichi Kato
- Laboratory of Environmental Toxicology and Carcinogenesis, School of Pharmacy, Nihon University, Chiba 274-8555, Japan;
| | - Hengdong Zhang
- Department of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210028, China;
- Jiangsu Preventive Medicine Association, Nanjing 210009, China
| | - Tingxu Jin
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, China; (Q.Y.); (R.Y.); (H.X.); (X.W.); (J.Z.)
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
- Correspondence: (T.J.); (Y.A.)
| | - Jie Zhang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, China; (Q.Y.); (R.Y.); (H.X.); (X.W.); (J.Z.)
| | - Yan An
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, China; (Q.Y.); (R.Y.); (H.X.); (X.W.); (J.Z.)
- Correspondence: (T.J.); (Y.A.)
| |
Collapse
|