1
|
Ma X, Wang Q, Ren K, Xu T, Zhang Z, Xu M, Rao Z, Zhang X. A Review of Antimicrobial Peptides: Structure, Mechanism of Action, and Molecular Optimization Strategies. FERMENTATION-BASEL 2024; 10:540. [DOI: 10.3390/fermentation10110540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Antimicrobial peptides (AMPs) are bioactive macromolecules that exhibit antibacterial, antiviral, and immunomodulatory functions. They come from a wide range of sources and are found in all forms of life, from bacteria to plants, vertebrates, and invertebrates, and play an important role in controlling the spread of pathogens, promoting wound healing and treating tumors. Consequently, AMPs have emerged as promising alternatives to next-generation antibiotics. With advancements in systems biology and synthetic biology technologies, it has become possible to synthesize AMPs artificially. We can better understand their functional activities for further modification and development by investigating the mechanism of action underlying their antimicrobial properties. This review focuses on the structural aspects of AMPs while highlighting their significance for biological activity. Furthermore, it elucidates the membrane targeting mechanism and intracellular targets of these peptides while summarizing molecular modification approaches aimed at enhancing their antibacterial efficacy. Finally, this article outlines future challenges in the functional development of AMPs along with proposed strategies to overcome them.
Collapse
Affiliation(s)
- Xu Ma
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| | - Qiang Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| | - Kexin Ren
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| | - Tongtong Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| | - Zigang Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| | - Meijuan Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| | - Xian Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| |
Collapse
|
2
|
Pavela O, Juhász T, Tóth L, Czajlik A, Batta G, Galgóczy L, Beke-Somfai T. Mapping of the Lipid-Binding Regions of the Antifungal Protein NFAP2 by Exploiting Model Membranes. J Chem Inf Model 2024; 64:6557-6569. [PMID: 39150323 PMCID: PMC11351017 DOI: 10.1021/acs.jcim.4c00229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
Fungal infections with high mortality rates represent an increasing health risk. The Neosartorya (Aspergillus) fischeri antifungal protein 2 (NFAP2) is a small, cysteine-rich, cationic protein exhibiting potent anti-Candida activity. As the underlying mechanism, pore formation has been demonstrated; however, molecular level details on its membrane disruption action are lacking. Herein, we addressed the lipid binding of NFAP2 using a combined computational and experimental approach to simple lipid compositions with various surface charge properties. Simulation results revealed binding preferences for negatively charged model membranes, where selectivity is mediated by anionic lipid components enriched at the protein binding site but also assisted by zwitterionic lipid species. Several potential binding routes initiated by various anchoring contacts were observed, which resulted in one main binding mode and a few variants, with NFAP2 residing on the membrane surface. Region 10NCPNNCKHKKG20 of the flexible N-terminal part of the protein showed potency to insert into the lipid bilayer, where the disulfide bond-stabilized short motif 11CPNNC15 could play a key role. In addition, several areas, including the beginning of the N-terminal (residues 1-8), played roles in facilitating initial membrane contacts. Besides, individual roles of residues such as Lys24, Lys32, Lys34, and Trp42 were also revealed by the simulations. Combined data demonstrated that the solution conformation was not perturbed markedly upon membrane interaction, and the folded part of the protein also contributed to stabilizing the bound state. Data also highlighted that the binding of NFAP2 to lipid vesicles is sensitively affected by environmental factors such as ionic strength. Electrostatic interactions driven by anionic lipids were found pivotal, explaining the reduced membrane activity observed under high salt conditions. Experimental data supported the lipid-selective binding mechanisms and pointed to salt-dependent effects, particularly to protein-assisted vesicle aggregation at low ionic strength. Our findings can contribute to the development of NFAP2-based anti-Candida agents and studies aiming at future medical use of peptide-based natural antifungal compounds.
Collapse
Affiliation(s)
- Olivér Pavela
- Institute
of Materials and Environmental Chemistry, HUN-REN Research Centre
for Natural Sciences, Magyar tudósok körútja 2, Budapest, H-1117, Hungary
- Hevesy
György PhD School of Chemistry, Eötvös Loránd
University, Budapest,
Pázmány Péter sétány 1/A, Budapest H-1117, Hungary
| | - Tünde Juhász
- Institute
of Materials and Environmental Chemistry, HUN-REN Research Centre
for Natural Sciences, Magyar tudósok körútja 2, Budapest, H-1117, Hungary
| | - Liliána Tóth
- Department
of Biotechnology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, Szeged H-6726, Hungary
| | - András Czajlik
- Department
of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1 Debrecen H-4032, Hungary
- Department
of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, Tűzoltó u. 37-47, Budapest H-1094, Hungary
| | - Gyula Batta
- Department
of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1 Debrecen H-4032, Hungary
| | - László Galgóczy
- Department
of Biotechnology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, Szeged H-6726, Hungary
- Institute
of Biochemistry, HUN-REN Biological Research Centre, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Tamás Beke-Somfai
- Institute
of Materials and Environmental Chemistry, HUN-REN Research Centre
for Natural Sciences, Magyar tudósok körútja 2, Budapest, H-1117, Hungary
| |
Collapse
|
3
|
Mazurkiewicz-Pisarek A, Baran J, Ciach T. Antimicrobial Peptides: Challenging Journey to the Pharmaceutical, Biomedical, and Cosmeceutical Use. Int J Mol Sci 2023; 24:ijms24109031. [PMID: 37240379 DOI: 10.3390/ijms24109031] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/14/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Antimicrobial peptides (AMPs), or host defence peptides, are short proteins in various life forms. Here we discuss AMPs, which may become a promising substitute or adjuvant in pharmaceutical, biomedical, and cosmeceutical uses. Their pharmacological potential has been investigated intensively, especially as antibacterial and antifungal drugs and as promising antiviral and anticancer agents. AMPs exhibit many properties, and some of these have attracted the attention of the cosmetic industry. AMPs are being developed as novel antibiotics to combat multidrug-resistant pathogens and as potential treatments for various diseases, including cancer, inflammatory disorders, and viral infections. In biomedicine, AMPs are being developed as wound-healing agents because they promote cell growth and tissue repair. The immunomodulatory effects of AMPs could be helpful in the treatment of autoimmune diseases. In the cosmeceutical industry, AMPs are being investigated as potential ingredients in skincare products due to their antioxidant properties (anti-ageing effects) and antibacterial activity, which allows the killing of bacteria that contribute to acne and other skin conditions. The promising benefits of AMPs make them a thrilling area of research, and studies are underway to overcome obstacles and fully harness their therapeutic potential. This review presents the structure, mechanisms of action, possible applications, production methods, and market for AMPs.
Collapse
Affiliation(s)
- Anna Mazurkiewicz-Pisarek
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| | - Joanna Baran
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| | - Tomasz Ciach
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warynskiego 1, 00-645 Warsaw, Poland
| |
Collapse
|
4
|
Liu Y, Tang Y, Ren S, Chen L. Antibacterial Components and Modes of the Methanol-Phase Extract from Commelina communis Linn. PLANTS (BASEL, SWITZERLAND) 2023; 12:890. [PMID: 36840240 PMCID: PMC9966474 DOI: 10.3390/plants12040890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Infectious diseases caused by pathogenic bacteria severely threaten human health. Traditional Chinese herbs are potential sources of new or alternative medicine. In this study, we analyzed for the first time antibacterial substances in the methanol-phase extract from a traditional Chinese herb-Commelina communis Linn-which showed an inhibition rate of 58.33% against 24 species of common pathogenic bacteria. The extract was further purified using preparative high-performance liquid chromatography (Prep-HPLC), which generated four single fragments (Fragments 1 to 4). The results revealed that Fragment 1 significantly increased bacterial cell surface hydrophobicity and membrane permeability and decreased membrane fluidity, showing disruptive effects on cell integrity of Gram-positive and Gram-negative bacteria, such as Bacillus cereus, Enterococcus faecalis, Staphylococcus aureus, and Salmonella enterica subsp., compared to the control groups (p < 0.05). In sum, 65 compounds with known functions in Fragment 1 were identified using liquid chromatography and mass spectrometry (LC-MS), of which quercetin-3-o-glucuronide was predominant (19.35%). Comparative transcriptomic analysis revealed multiple altered metabolic pathways mediated by Fragment 1, such as inhibited ABC transporters, ribosome, citrate cycle and oxidative phosphorylation, and upregulated nitrogen metabolism and purine metabolism, thereby resulting in the repressed bacterial growth and even death (p < 0.05). Overall, the results of this study demonstrate that Fragment 1 from C. communis Linn is a promising candidate against common pathogenic bacteria.
Collapse
Affiliation(s)
- Yue Liu
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Shanghai 201306, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yingping Tang
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Shanghai 201306, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Shunlin Ren
- Department of Internal Medicine, Virginia Commonwealth University/McGuire VA Medical Centre, Richmond, VA 23298, USA
| | - Lanming Chen
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Shanghai 201306, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
5
|
Udyavara Nagaraj V, Juhász T, Quemé-Peña M, Szigyártó IC, Bogdán D, Wacha A, Mihály J, Románszki L, Varga Z, Andréasson J, Mándity I, Beke-Somfai T. Stimuli-Responsive Membrane Anchor Peptide Nanofoils for Tunable Membrane Association and Lipid Bilayer Fusion. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55320-55331. [PMID: 36473125 PMCID: PMC9782321 DOI: 10.1021/acsami.2c11946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/22/2022] [Indexed: 06/07/2023]
Abstract
Self-assembled peptide nanostructures with stimuli-responsive features are promising as functional materials. Despite extensive research efforts, water-soluble supramolecular constructs that can interact with lipid membranes in a controllable way are still challenging to achieve. Here, we have employed a short membrane anchor protein motif (GLFD) and coupled it to a spiropyran photoswitch. Under physiological conditions, these conjugates assemble into ∼3.5 nm thick, foil-like peptide bilayer morphologies. Photoisomerization from the closed spiro (SP) form to the open merocyanine (MC) form of the photoswitch triggers rearrangements within the foils. This results in substantial changes in their membrane-binding properties, which also varies sensitively to lipid composition, ranging from reversible nanofoil reformation to stepwise membrane adsorption. The formed peptide layers in the assembly are also able to attach to various liposomes with different surface charges, enabling the fusion of their lipid bilayers. Here, SP-to-MC conversion can be used both to trigger and to modulate the liposome fusion efficiency.
Collapse
Affiliation(s)
- Vignesh Udyavara Nagaraj
- Institute
of Materials and Environmental Chemistry, Research Centre for Natural Sciences, BudapestH-1117, Hungary
- Hevesy
György Ph.D. School of Chemistry, Eötvös Loránd University, BudapestH-1117, Hungary
| | - Tünde Juhász
- Institute
of Materials and Environmental Chemistry, Research Centre for Natural Sciences, BudapestH-1117, Hungary
| | - Mayra Quemé-Peña
- Institute
of Materials and Environmental Chemistry, Research Centre for Natural Sciences, BudapestH-1117, Hungary
- Hevesy
György Ph.D. School of Chemistry, Eötvös Loránd University, BudapestH-1117, Hungary
| | - Imola Cs. Szigyártó
- Institute
of Materials and Environmental Chemistry, Research Centre for Natural Sciences, BudapestH-1117, Hungary
| | - Dóra Bogdán
- Institute
of Materials and Environmental Chemistry, Research Centre for Natural Sciences, BudapestH-1117, Hungary
- Department
of Organic Chemistry, Faculty of Pharmacy, Semmelweis University, BudapestH-1092, Hungary
| | - András Wacha
- Institute
of Materials and Environmental Chemistry, Research Centre for Natural Sciences, BudapestH-1117, Hungary
| | - Judith Mihály
- Institute
of Materials and Environmental Chemistry, Research Centre for Natural Sciences, BudapestH-1117, Hungary
| | - Loránd Románszki
- Institute
of Materials and Environmental Chemistry, Research Centre for Natural Sciences, BudapestH-1117, Hungary
| | - Zoltán Varga
- Institute
of Materials and Environmental Chemistry, Research Centre for Natural Sciences, BudapestH-1117, Hungary
| | - Joakim Andréasson
- Department
of Chemistry and Chemical Engineering, Physical Chemistry, Chalmers University of Technology, GothenburgSE-412 96, Sweden
| | - István Mándity
- Institute
of Materials and Environmental Chemistry, Research Centre for Natural Sciences, BudapestH-1117, Hungary
- Department
of Organic Chemistry, Faculty of Pharmacy, Semmelweis University, BudapestH-1092, Hungary
| | - Tamás Beke-Somfai
- Institute
of Materials and Environmental Chemistry, Research Centre for Natural Sciences, BudapestH-1117, Hungary
- Department
of Chemistry and Chemical Engineering, Physical Chemistry, Chalmers University of Technology, GothenburgSE-412 96, Sweden
| |
Collapse
|
6
|
Talapko J, Meštrović T, Juzbašić M, Tomas M, Erić S, Horvat Aleksijević L, Bekić S, Schwarz D, Matić S, Neuberg M, Škrlec I. Antimicrobial Peptides-Mechanisms of Action, Antimicrobial Effects and Clinical Applications. Antibiotics (Basel) 2022; 11:antibiotics11101417. [PMID: 36290075 PMCID: PMC9598582 DOI: 10.3390/antibiotics11101417] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022] Open
Abstract
The growing emergence of antimicrobial resistance represents a global problem that not only influences healthcare systems but also has grave implications for political and economic processes. As the discovery of novel antimicrobial agents is lagging, one of the solutions is innovative therapeutic options that would expand our armamentarium against this hazard. Compounds of interest in many such studies are antimicrobial peptides (AMPs), which actually represent the host's first line of defense against pathogens and are involved in innate immunity. They have a broad range of antimicrobial activity against Gram-negative and Gram-positive bacteria, fungi, and viruses, with specific mechanisms of action utilized by different AMPs. Coupled with a lower propensity for resistance development, it is becoming clear that AMPs can be seen as emerging and very promising candidates for more pervasive usage in the treatment of infectious diseases. However, their use in quotidian clinical practice is not without challenges. In this review, we aimed to summarize state-of-the-art evidence on the structure and mechanisms of action of AMPs, as well as to provide detailed information on their antimicrobial activity. We also aimed to present contemporary evidence of clinical trials and application of AMPs and highlight their use beyond infectious diseases and potential challenges that may arise with their increasing availability.
Collapse
Affiliation(s)
- Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Correspondence: (J.T.); (I.Š.)
| | - Tomislav Meštrović
- University Centre Varaždin, University North, 42000 Varaždin, Croatia
- Institute for Health Metrics and Evaluation, University of Washington, 3980 15th Ave. NE, Seattle, WA 98195, USA
| | - Martina Juzbašić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Matej Tomas
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Suzana Erić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
| | - Lorena Horvat Aleksijević
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Sanja Bekić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
- Family Medicine Practice, 31000 Osijek, Croatia
| | - Dragan Schwarz
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Suzana Matić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
| | - Marijana Neuberg
- University Centre Varaždin, University North, 42000 Varaždin, Croatia
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Correspondence: (J.T.); (I.Š.)
| |
Collapse
|
7
|
Sankari S, Babu VM, Bian K, Alhhazmi A, Andorfer MC, Avalos DM, Smith TA, Yoon K, Drennan CL, Yaffe MB, Lourido S, Walker GC. A haem-sequestering plant peptide promotes iron uptake in symbiotic bacteria. Nat Microbiol 2022; 7:1453-1465. [PMID: 35953657 PMCID: PMC9420810 DOI: 10.1038/s41564-022-01192-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/29/2022] [Indexed: 11/09/2022]
Abstract
Symbiotic partnerships with rhizobial bacteria enable legumes to grow without nitrogen fertilizer because rhizobia convert atmospheric nitrogen gas into ammonia via nitrogenase. After Sinorhizobium meliloti penetrate the root nodules that they have elicited in Medicago truncatula, the plant produces a family of about 700 nodule cysteine-rich (NCR) peptides that guide the differentiation of endocytosed bacteria into nitrogen-fixing bacteroids. The sequences of the NCR peptides are related to the defensin class of antimicrobial peptides, but have been adapted to play symbiotic roles. Using a variety of spectroscopic, biophysical and biochemical techniques, we show here that the most extensively characterized NCR peptide, 24 amino acid NCR247, binds haem with nanomolar affinity. Bound haem molecules and their iron are initially made biologically inaccessible through the formation of hexamers (6 haem/6 NCR247) and then higher-order complexes. We present evidence that NCR247 is crucial for effective nitrogen-fixing symbiosis. We propose that by sequestering haem and its bound iron, NCR247 creates a physiological state of haem deprivation. This in turn induces an iron-starvation response in rhizobia that results in iron import, which itself is required for nitrogenase activity. Using the same methods as for L-NCR247, we show that the D-enantiomer of NCR247 can bind and sequester haem in an equivalent manner. The special abilities of NCR247 and its D-enantiomer to sequester haem suggest a broad range of potential applications related to human health.
Collapse
Affiliation(s)
- Siva Sankari
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Vignesh M.P. Babu
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Ke Bian
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Areej Alhhazmi
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Mary C. Andorfer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Dante M. Avalos
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Harvard Graduate Program in Biophysics, Harvard University, Cambridge, MA 02138, USA
| | - Tyler A. Smith
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Kwan Yoon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Catherine L. Drennan
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Michael B. Yaffe
- Departments of Biology and Biological Engineering, and Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute for Technology, Cambridge, MA 02139, USA.,Divisions of Acute Care Surgery, Trauma, and Surgical Critical Care, and Surgical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215 USA
| | - Sebastian Lourido
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Graham C. Walker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| |
Collapse
|