1
|
Kim D, Hu X, Yu B, Chen YI. Small Additives Make Big Differences: A Review on Advanced Additives for High-Performance Solid-State Li Metal Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401625. [PMID: 38934341 DOI: 10.1002/adma.202401625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/03/2024] [Indexed: 06/28/2024]
Abstract
Solid-state lithium (Li) metal batteries, represent a significant advancement in energy storage technology, offering higher energy densities and enhanced safety over traditional Li-ion batteries. However, solid-state electrolytes (SSEs) face critical challenges such as lower ionic conductivity, poor stability at the electrode-electrolyte interface, and dendrite formation, potentially leading to short circuits and battery failure. The introduction of additives into SSEs has emerged as a transformative approach to address these challenges. A small amount of additives, encompassing a range from inorganic and organic materials to nanostructures, effectively improve ionic conductivity, drawing it nearer to that of their liquid counterparts, and strengthen mechanical properties to prevent cracking of SSEs and maintain stable interfaces. Importantly, they also play a critical role in inhibiting the growth of dendritic Li, thereby enhancing the safety and extending the lifespan of the batteries. In this review, the wide variety of additives that have been investigated, is comprehensively explored, emphasizing how they can be effectively incorporated into SSEs. By dissecting the operational mechanisms of these additives, the review hopes to provide valuable insights that can help researchers in developing more effective SSEs, leading to the creation of more efficient and reliable solid-state Li metal batteries.
Collapse
Affiliation(s)
- Donggun Kim
- Institute for Frontier Materials, Deakin University, Waurn Ponds, VIC, 3216, Australia
| | - Xin Hu
- Institute for Frontier Materials, Deakin University, Waurn Ponds, VIC, 3216, Australia
| | - Baozhi Yu
- Institute for Frontier Materials, Deakin University, Waurn Ponds, VIC, 3216, Australia
| | - Ying Ian Chen
- Institute for Frontier Materials, Deakin University, Waurn Ponds, VIC, 3216, Australia
| |
Collapse
|
2
|
Awgchew H, Beyene S, Kifilu A. Potassium adsorption capacity and desorption kinetics in soils of Qenberenaweti sub-watershed, central highlands of Ethiopia. Heliyon 2024; 10:e31336. [PMID: 38803861 PMCID: PMC11129098 DOI: 10.1016/j.heliyon.2024.e31336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
Determining the supply and uptake of K nutrient and the dynamic equilibrium (adsorption-desorption) reactions among the K forms in the soils are not commonly addressed in the highlands of Ethiopia. A study was therefore initiated to determine the adsorption capacity of the exchangeable K and the release kinetics of the non-exchangeable K in the soils of the Qenberenaweti Sub-watershed. Twelve disturbed surface (0-20 cm) soil sub-samples were collected from every farmland which was representative of each pre-identified soil type (Vertic Cambisols, Pellic Vertisols, Pisoplinthic Luvisols, Relictistagnic Cambisols, Pisoplinthic Cambisols, and Plinthofractic Cambisols). A composite sample was made in duplicate for the determination of K adsorption capacity and desorption kinetics per soil type. The mean maximum (69.47 ± 4.31 %) and minimum (56.16 ± 6.04 %) K adsorption rates were obtained from the Plinthofractic Cambisols and Vertic Cambisols, respectively. Among the tested isotherm models, the goodness of the Freundlich was better fit the data of all experimental soils; hence, a modified equation of this model (qe = aCeb/a) could be used to describe the theoretical doses of K fertilizers required to develop K levels in soil solutions. The highest constant K releases from the Plinthofractic Cambisols (47 mg kg-1), Pisiopllintic Cambisols (46 mg kg-1), and Pisoplinthic Luvisols (44 mg kg-1) were attained at the 9th extraction. In comparison, it was noticed at the 7th and 11th extractions of the Relictistagnic Cambisols (45 mg kg-1) and both Pellic Vertisols (48 mg kg-1) and Vertic Cambisols (42 mg kg-1), respectively. The equation of power function was the best to successfully describe the released K+ from all the experimental soils. Eventually, determining the adsorption capacity and release kinetics of K at a site-specific level helps to know the relative potential of the soils to supply K and also plan for an effective K fertilization strategy.
Collapse
Affiliation(s)
- Haymanot Awgchew
- School of Plant and Horticultural Science, Hawassa University, Hawassa, Ethiopia
| | - Sheleme Beyene
- School of Plant and Horticultural Science, Hawassa University, Hawassa, Ethiopia
| | - Alemayehu Kifilu
- School of Plant and Horticultural Science, Hawassa University, Hawassa, Ethiopia
| |
Collapse
|
3
|
Piasecki W, Lament K. Application of Potentiometric and Electrophoretic Measurements to Evaluate the Reversibility of Adsorption of Divalent Ions from a Solution on Titanium Dioxide. Molecules 2024; 29:555. [PMID: 38338300 PMCID: PMC11154309 DOI: 10.3390/molecules29030555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/12/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
The adsorption of divalent ions on metal oxides is controlled by the pH of a solution. It is commonly assumed that this is a reversible process for pH changes. However, there are reports that the sorption of ions on oxides may not be reversible. To verify this, we used potentiometric titration, ion-selective electrodes (ISEs), and electrokinetic measurements to examine the reversibility of the adsorption of hydrogen ions and three metal ions (Ca2+, Cu2+, and Fe2+) on TiO2. The ferrous ion was used as a reference because its adsorption is entirely irreversible. The surface charge determined by potentiometric titration and the adsorption edges measured using ISE indicate that the adsorption of copper ions is reversible with changes in pH. In the case of calcium ions, the results suggest a certain degree of irreversibility. There are apparent differences in the electrokinetic potential data obtained during titration with base and acid, which suggests that the adsorption is irreversible. We have explained this contradiction by considering the complex and dynamic nature of electrophoretic mobility. In our opinion, potentiometric titration may be the simplest and most reliable method for assessing the reversibility of multivalent ion adsorption.
Collapse
Affiliation(s)
- Wojciech Piasecki
- Department of Physical Education and Health, Józef Piłsudski University of Physical Education in Warsaw, Akademicka 2, 21-500 Biała Podlaska, Poland;
| | | |
Collapse
|
4
|
Rather MA, Bhuyan S, Chowdhury R, Sarma R, Roy S, Neog PR. Nanoremediation strategies to address environmental problems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 886:163998. [PMID: 37172832 DOI: 10.1016/j.scitotenv.2023.163998] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/19/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
A rapid rise in population, extensive anthropogenic activities including agricultural practices, up-scaled industrialization, massive deforestation, etc. are the leading causes of environmental degradation. Such uncontrolled and unabated practices have affected the quality of environment (water, soil, and air) synergistically by accumulating huge quantities of organic and inorganic pollutants in it. Environmental contamination is posing a threat to the existing life on the Earth, therefore, demands the development of sustainable environmental remediation approaches. The conventional physiochemical remediation approaches are laborious, expensive, and time-consuming. In this regard, nanoremediation has emerged as an innovative, rapid, economical, sustainable, and reliable approach to remediate various environmental pollutants and minimize or attenuate the risks associated with them. Owing to their unique properties such as high surface area to volume ratio, enhanced reactivity, tunable physical parameters, versatility, etc. nanoscale objects have gained attention in environmental clean-up practices. The current review highlights the role of nanoscale objects in the remediation of environmental contaminants to minimize their impact on human, plant, and animal health; and air, water, and soil quality. The aim of the review is to provide information about the applications of nanoscale objects in dye degradation, wastewater management, heavy metal and crude oil remediation, and mitigation of gaseous pollutants including greenhouse gases.
Collapse
Affiliation(s)
- Muzamil Ahmad Rather
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India.
| | - Shuvam Bhuyan
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India
| | - Ratan Chowdhury
- Department of Botany, Rangapara College, Rangapara 784505, Assam, India
| | - Rahul Sarma
- Department of Energy, Tezpur University, Napaam, Tezpur 784028, Assam, India
| | - Subham Roy
- Department of Botany, Rangapara College, Rangapara 784505, Assam, India
| | - Panchi Rani Neog
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India
| |
Collapse
|
5
|
İlktaç R. Rapid removal of crystal violet and methylene blue from aqueous solutions using chamotte clay. MONATSHEFTE FUR CHEMIE 2023. [DOI: 10.1007/s00706-023-03044-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
6
|
Nguyen THA, Quang DT, Tan LV, Vo TK. Ultrasonic spray pyrolysis synthesis of TiO 2/Al 2O 3 microspheres with enhanced removal efficiency towards toxic industrial dyes. RSC Adv 2023; 13:5859-5868. [PMID: 36816090 PMCID: PMC9932635 DOI: 10.1039/d3ra00024a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/03/2023] [Indexed: 02/18/2023] Open
Abstract
Developing low-cost and highly effective adsorbent materials to decolorate wastewater is still challenging in the industry. In this study, TiO2-modified Al2O3 microspheres with different TiO2 contents were produced by spray pyrolysis, which is rapid and easy to scale up. Results reveal that the modification of γ-Al2O3 with TiO2 reduced the crystallite size of Al2O3 and generated more active sites in the composite sample. The as-synthesized Al2O3-TiO2 microspheres were applied to remove anionic methyl orange (MO) and cationic rhodamine B (RB) dyes in an aqueous solution using batch and continuous flow column sorption processes. Results show that the Al2O3 microspheres modified with 15 wt% of TiO2 exhibited the maximum adsorbing capacity of ∼41.15 mg g-1 and ∼32.28 mg g-1 for MO and RB, respectively, exceeding the bare γ-Al2O3 and TiO2. The impact of environmental complexities on the material's reactivity for the organic pollutants was further delineated by adjusting the pH and adding coexisting ions. At pH ∼5.5, the TiO2/Al2O3 microspheres showed higher sorption selectivity towards MO. In the continuous flow column removal, the TiO2/Al2O3 microspheres achieved sorption capacities of ∼31 mg g-1 and ∼19 mg g-1 until the breakthrough point for MO and RB, respectively. The findings reveal that TiO2-modified Al2O3 microspheres were rapidly prepared by spray pyrolysis, and they effectively treated organic dyes in water in batch and continuous flow removal processes.
Collapse
Affiliation(s)
- Thi Hong Anh Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Food Industry140 Le Trong Tan, Tan PhuHo Chi Minh CityVietnam
| | - Duong Tuan Quang
- University of Education, Hue University34 Le Loi, Phu HoiHue City530000Vietnam
| | - Le Van Tan
- Department of Chemical Engineering, Industrial University of Ho Chi Minh City 12 Nguyen Van Bao, Go Vap Ho Chi Minh City Vietnam
| | - The Ky Vo
- Department of Chemical Engineering, Industrial University of Ho Chi Minh City 12 Nguyen Van Bao, Go Vap Ho Chi Minh City Vietnam
| |
Collapse
|
7
|
Effect of Coexisting Ions on the Removal of Zn2+ from Aqueous Solution Using FePO4. CHEMISTRY AFRICA 2023. [DOI: 10.1007/s42250-023-00614-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
8
|
A Mini Review of Antibacterial Properties of Al2O3 Nanoparticles. NANOMATERIALS 2022; 12:nano12152635. [PMID: 35957067 PMCID: PMC9370748 DOI: 10.3390/nano12152635] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/23/2022] [Accepted: 07/28/2022] [Indexed: 12/10/2022]
Abstract
Bacterial antibiotic resistance is one of the most serious modern biomedical problems that prioritizes the search for new agents to combat bacterial pathogens. It is known that nanoparticles of many metals and metal oxides can have an antibacterial effect. However, the antibacterial efficacy of aluminum oxide nanoparticles has been studied little compared to the well-known antimicrobial properties of nanoparticles of oxides of metals such as zinc, silver, iron, and copper. In this review, we have focused on the experimental studies accumulated to date demonstrating the antibacterial effect of aluminum oxide nanoparticles. The review discusses the main ways of synthesis and modification of these nanoparticles, provides the proposed mechanisms of their antibacterial action against gram-positive and gram-negative bacteria, and also compares the antibacterial efficacy depending on morphological characteristics. We have also partially considered the activity of aluminum oxide nanoparticles against water microalgae and fungi. In general, a more detailed study of the antibacterial properties of aluminum oxide nanoparticles is of great interest due to their low toxicity to eukaryotic cells.
Collapse
|