1
|
Liu F, Wang X, He Y, Han R, Wang T, Guo Y. Jaw osteoporosis: Challenges to oral health and emerging perspectives of treatment. Biomed Pharmacother 2024; 177:116995. [PMID: 38917761 DOI: 10.1016/j.biopha.2024.116995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/27/2024] Open
Abstract
Osteoporosis is a prevalent bone metabolic disease that poses a significant challenge to global human health. Jaw osteoporosis, characterized by microstructural damage of the jaw resulting from various factors, is one of the common manifestations of this condition. Recent studies have demonstrated that jaw osteoporosis has multifaceted effects on oral health and can negatively impact conditions such as periodontitis, oral implantation, orthodontic treatment, and wound healing. However, there are still some limitations in the conventional treatment of osteoporosis. For instance, while bisphosphonates can enhance bone quality, they may also lead to osteonecrosis of the jaw, which poses a potential safety hazard in oral diagnosis and treatment. In recent years, considerable attention has been focused on improving the pathological condition of jaw osteoporosis. Treatment strategies such as gut microbial regulation, extracellular vesicles, molecular targeted therapy, herbal medicine, mechanical stimulation are expected to enhance efficacy and minimize adverse reactions. Therefore, understanding these effects and exploring novel treatments for jaw osteoporosis may provide new insights for oral health maintenance and disease treatment. This article reviews the impact of jaw osteoporosis on oral health and describes the limitations associated with current methods. It also discusses emerging perspectives on treatment, offering a comprehensive overview of the challenges and future directions in managing jaw osteoporosis.
Collapse
Affiliation(s)
- Fushuang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xuan Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yikai He
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ruiying Han
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tianyi Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yongwen Guo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
2
|
Jantaboon S, Sakunrangsit N, Toejing P, Leelahavanichkul A, Pisitkun P, Greenblatt MB, Lotinun S. Lipopolysaccharide Impedes Bone Repair in FcγRIIB-Deficient Mice. Int J Mol Sci 2023; 24:16944. [PMID: 38069267 PMCID: PMC10707393 DOI: 10.3390/ijms242316944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Chronic inflammation contributes to the development of skeletal disorders in patients with systemic lupus erythematosus (SLE). Activation of the host immune response stimulates osteoclast activity, which in turn leads to bone loss. Regenerating bone in the inflammatory microenvironments of SLE patients with critical bone defects remains a great challenge. In this study, we utilized lipopolysaccharide (LPS) to imitate locally and systemically pathogenic bacterial infection and examined the bone regeneration performance of LPS-associated mandibular and tibial bone regeneration impairment in FcγRIIB-/- mice. Our results indicated that a loss of FcγRIIB alleviates bone regeneration in both mandibles and tibiae. After LPS induction, FcγRIIB-/- mice were susceptible to impaired fracture healing in tibial and mandibular bones. LPS decreased the mineralization to collagen ratio in FcγRIIB-/- mice, indicating a mineralization defect during bone repair. An osteoblast-associated gene (Col1a1) was attenuated in FcγRIIB-deficient mice, whereas Bglap, Hhip, and Creb5 were further downregulated with LPS treatment in FcγRIIB-/- mice compared to FcγRIIB-/- mice. Alpl and Bglap expression was dcreased in osteoblasts derived from bone chips. An osteoclast-associated gene, Tnfsf11/Tnfrsf11 ratio, ewas increased in LPS-induced FcγRIIB-/- mice and in vitro. Furthermore, systemic LPS was relatively potent in stimulating production of pro-inflammatory cytokines including TNF-α, IL-6, and MCP-1 in FcγRIIB-/- mice compared to FcγRIIB-/- mice. The levels of TNF-α, IFN-β, IL-1α, and IL-17A were increased, whereas IL-10 and IL-23 were decreased in FcγRIIB-/- mice treated locally with LPS. These findings suggest that both local and systemic LPS burden can exacerbate bone regeneration impairment, delay mineralization and skeletal repair, and induce inflammation in SLE patients.
Collapse
Affiliation(s)
- Sirikanda Jantaboon
- Interdisciplinary Program of Physiology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Nithidol Sakunrangsit
- Center of Excellence in Skeletal Disorders and Enzyme Reaction Mechanism, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand (P.T.)
| | - Parichart Toejing
- Center of Excellence in Skeletal Disorders and Enzyme Reaction Mechanism, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand (P.T.)
| | - Asada Leelahavanichkul
- Division of Immunology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Prapaporn Pisitkun
- Division of Allergy, Immunology, and Rheumatology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
| | - Matthew B. Greenblatt
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine and Research Division, Hospital for Special Surgery, New York, NY 10065, USA;
| | - Sutada Lotinun
- Center of Excellence in Skeletal Disorders and Enzyme Reaction Mechanism, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand (P.T.)
| |
Collapse
|
3
|
Gao M, Du Z, Dong Q, Su S, Tian L. DAP1 regulates osteoblast autophagy via the ATG16L1-LC3 axis in Graves' disease-induced osteoporosis. J Orthop Surg Res 2023; 18:711. [PMID: 37735431 PMCID: PMC10512661 DOI: 10.1186/s13018-023-04171-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023] Open
Abstract
OBJECTIVE This study aimed to uncover a critical protein and its mechanisms in modulating autophagy in Graves' disease (GD)-induced osteoporosis (OP). METHODS We discovered the target protein, death-associated protein 1 (DAP1), using bone proteomics analysis. Furthermore, genetic overexpression and knockdown (KD) of DAP1 in bone and MC3T3-E1 cells revealed DAP1 effects on autophagy and osteogenic markers, and autophagic vacuoles in cells were detected using transmission electron microscopy and the microtubule-associated protein 1 light chain 3 alpha (MAP1LC3/LC3) dual fluorescence system. An autophagy polymerase chain reaction (PCR) array kit was used to identify the key molecules associated with DAP1-regulated autophagy. RESULTS DAP1 levels were significantly higher in the bone tissue of GD mice and MC3T3-E1 cells treated with triiodothyronine (T3). DAP1 overexpression reduced LC3 lipidation, autophagic vacuoles, RUNX family transcription factor 2 (RUNX2), and osteocalcin (OCN) expression in MC3T3-E1 cells, whereas DAP1 KD reversed these changes. In vivo experiments revealed that GD mice with DAP1 KD had greater bone mass than control mice. DAP1-overexpressing (OE) cells had lower levels of phosphorylated autophagy-related 16-like 1 (ATG16L1) and LC3 lipidation, whereas DAP1-KD cells had higher levels. CONCLUSIONS DAP1 was found to be a critical regulator of autophagy homeostasis in GD mouse bone tissue and T3-treated osteoblasts because it negatively regulated autophagy and osteogenesis in osteoblasts via the ATG16L1-LC3 axis.
Collapse
Affiliation(s)
- Mingdong Gao
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730030, Gansu, China
- Department Pediatrics, Gansu Provincial Hospital, Lanzhou, 730030, Gansu, China
- Clinical Research Center for Metabolic Diseases, Lanzhou, 730030, Gansu, China
| | - Zouxi Du
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730030, Gansu, China
| | - Qianqian Dong
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730030, Gansu, China
| | - Shan Su
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730030, Gansu, China
| | - Limin Tian
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730030, Gansu, China.
- Clinical Research Center for Metabolic Diseases, Lanzhou, 730030, Gansu, China.
- Department of Endocrinology, Gansu Provincial Hospital, No. 204 West Donggang Road, Lanzhou, 730030, Gansu, China.
| |
Collapse
|
4
|
Lu W, Zheng C, Zhang H, Cheng P, Miao S, Wang H, He T, Fan J, Hu Y, Liu H, Jia L, Hao X, Luo Z, Xu J, Jie Q, Yang L. Hedgehog signaling regulates bone homeostasis through orchestrating osteoclast differentiation and osteoclast-osteoblast coupling. Cell Mol Life Sci 2023; 80:171. [PMID: 37261512 PMCID: PMC11071711 DOI: 10.1007/s00018-023-04821-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/08/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
Imbalance of bone homeostasis induces bone degenerative diseases such as osteoporosis. Hedgehog (Hh) signaling plays critical roles in regulating the development of limb and joint. However, its unique role in bone homeostasis remained largely unknown. Here, we found that canonical Hh signaling pathway was gradually augmented during osteoclast differentiation. Genetic inactivation of Hh signaling in osteoclasts, using Ctsk-Cre;Smof/f conditional knockout mice, disrupted both osteoclast formation and subsequent osteoclast-osteoblast coupling. Concordantly, either Hh signaling inhibitors or Smo/Gli2 knockdown stunted in vitro osteoclast formation. Mechanistically, Hh signaling positively regulated osteoclast differentiation via transactivation of Traf6 and stabilization of TRAF6 protein. Then, we identified connective tissue growth factor (CTGF) as an Hh-regulatory bone formation-stimulating factor derived from osteoclasts, whose loss played a causative role in osteopenia seen in CKO mice. In line with this, recombinant CTGF exerted mitigating effects against ovariectomy induced bone loss, supporting a potential extension of local rCTGF treatment to osteoporotic diseases. Collectively, our findings firstly demonstrate that Hh signaling, which dictates osteoclast differentiation and osteoclast-osteoblast coupling by regulating TRAF6 and CTGF, is crucial for maintaining bone homeostasis, shedding mechanistic and therapeutic insights into the realm of osteoporosis.
Collapse
Affiliation(s)
- Weiguang Lu
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chao Zheng
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hongyang Zhang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Pengzhen Cheng
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- Pediatric Orthopaedic Hospital, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
- Research Center for Skeletal Developmental Deformity and Injury Repair, College of Life Science and Medicine, Northwest University, Xi'an, China
| | - Sheng Miao
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Huanbo Wang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ting He
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Jing Fan
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yaqian Hu
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - He Liu
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Liyuan Jia
- Research Center for Skeletal Developmental Deformity and Injury Repair, College of Life Science and Medicine, Northwest University, Xi'an, China
| | - Xue Hao
- Pediatric Orthopaedic Hospital, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Zhuojing Luo
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Qiang Jie
- Pediatric Orthopaedic Hospital, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China.
- Research Center for Skeletal Developmental Deformity and Injury Repair, College of Life Science and Medicine, Northwest University, Xi'an, China.
- Clinical Research Center for Pediatric Skeletal Deformity and Injury of Shaanxi Province, Xi'an, China.
| | - Liu Yang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
5
|
Hu Q, Yang L, Shan Z, Wen S, Lu H, Zou Z, Guo J, Liu X, Xie W, Cao Y, Wang Z, Yang L, Wang X. The interaction of CD300lf and ceramide reduces the development of periodontitis by inhibiting osteoclast differentiation. J Clin Periodontol 2023; 50:183-199. [PMID: 36089906 DOI: 10.1111/jcpe.13724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/24/2022] [Accepted: 09/06/2022] [Indexed: 01/20/2023]
Abstract
AIM The regulation of osteoclasts (OCs) by inhibitory immunoreceptors maintains bone homeostasis and is considered an important determinant of the extent of periodontal pathology. The aim of this study was to investigate the role of the inhibitory immunoreceptor CD300lf and its ligand ceramide in osteoclastogenesis in periodontitis. MATERIALS AND METHODS The expression of CD300lf was measured in vitro and in a ligature-induced periodontitis model. The effect of CD300lf ablation on osteoclastogenesis was examined in ligature-retained and ligature removal periodontitis models. The effect of ceramide, the ligand of CD300lf, was examined in osteoclastogenesis in vitro and in vivo by smearing 20 μg of ceramide dissolved in carboxymethylcellulose on teeth and gingiva every other day in an experimental periodontitis model and ligature removal model. RESULTS CD300lf expression was downregulated during osteoclastogenesis. Ablation of CD300lf in the ligature-induced periodontitis model increased the number of OCs and exacerbated bone damage. Bone resorption caused by CD300lf ablation was reversible following ligature removal. CD300lf-ceramide binding suppressed osteoclastogenesis in vitro and inhibited alveolar bone loss in a mouse periodontitis model. CONCLUSIONS Our findings reveal that CD300lf-ceramide binding plays a critical negative role in alveolar bone loss in periodontitis by inhibiting OCs differentiation.
Collapse
Affiliation(s)
- Qiannan Hu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Lisa Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhongyan Shan
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shuqiong Wen
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Huanzi Lu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhaolei Zou
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Junyi Guo
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiangqi Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Wenqiang Xie
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yang Cao
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhi Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Le Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xi Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
BMP9 reduces age-related bone loss in mice by inhibiting osteoblast senescence through Smad1-Stat1-P21 axis. Cell Death Dis 2022; 8:254. [PMID: 35523787 PMCID: PMC9076651 DOI: 10.1038/s41420-022-01048-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 11/27/2022]
Abstract
Age-related osteoporosis is characterized by the accumulation of senescent osteoblastic cells in bone microenvironment and significantly reduced osteogenic differentiation. Clearing of the senescent cells is helpful to improve bone formation in aged mice. Bone morphogenetic protein 9 (BMP9), a multifunctional protein produced and secreted by liver, was reported to improve osteoporosis caused by estrogen withdrawal. However, the mechanism of BMP9 has not been fully elucidated, and its effect on senile osteoporosis has not been reported. This study reveals that BMP9 significantly increases bone mass and improves bone biomechanical properties in aged mice. Furthermore, BMP9 reduces expression of senescent genes in bone microenvironment, accompanied by decreased senescence-associated secretory phenotypes (SASPs) such as Ccl5, Mmp9, Hmgb1, Nfkb1, and Vcam1. In vitro, Bmp9 treatment inhibits osteoblast senescence through activating Smad1, which suppresses the transcriptional activity of Stat1, thereby inhibits P21 expression and SASPs production. Furthermore, inhibiting the Smad1 signal in vivo can reverse the inhibitory effect of BMP9 on Stat1 and downstream senescent genes, which eliminates the protection of BMP9 on age-related osteoporosis. These findings highlight the critical role of BMP9 on reducing age-related bone loss by inhibiting osteoblast senescence through Smad1-Stat1-P21 axis. BMP9 inhibits cellular senescence by activation of Smad1, which suppresses the transcription of Stat1, resulting in decreased P21 expression and SASPs production in osteoblast. The anti-aging effect of BMP9 is benefit to improving age-related osteoporosis.![]()
Collapse
|
7
|
Brodzikowska A, Górski B. Polymorphisms in Genes Involved in Inflammation and Periodontitis: A Narrative Review. Biomolecules 2022; 12:552. [PMID: 35454140 PMCID: PMC9030004 DOI: 10.3390/biom12040552] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 12/14/2022] Open
Abstract
Current evidence pinpoints that the variability in periodontitis traits in humans may be attributable to genetic factors. Different allelic variants can result in alterations in tissue structure, antibody responses and inflammatory mediators. Consequently, genetic variations may act as protective or risk factors for periodontal diseases. A number of features of the inflammatory and immune response that seem to play a role in the development of periodontitis have a clearly established genetic basis. Identifying genes that contribute to the pathogenesis of periodontitis may be utilized for risk assessment in both aggressive and chronic periodontitis. The aim of this narrative review is to summarize the role of polymorphisms in genes involved in inflammation and periodontitis, including cellular receptors, tissue compatibility antigens, antibodies and cytokines.
Collapse
Affiliation(s)
- Aniela Brodzikowska
- Department of Conservative Dentistry, Medical University of Warsaw, 02097 Warsaw, Poland
| | - Bartłomiej Górski
- Department of Periodontology and Oral Mucosa Diseases, Medical University of Warsaw, 02097 Warsaw, Poland;
| |
Collapse
|