1
|
Groseclose T, Kober EA, Clark M, Moore B, Banerjee S, Bemmer V, Beckham GT, Pickford AR, Dale TT, Nguyen HB. A High-Throughput Screening Platform for Engineering Poly(ethylene Terephthalate) Hydrolases. ACS Catal 2024; 14:14622-14638. [PMID: 39386920 PMCID: PMC11459431 DOI: 10.1021/acscatal.4c04321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/28/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024]
Abstract
The ability of enzymes to hydrolyze the ubiquitous polyester, poly(ethylene terephthalate) (PET), has enabled the potential for bioindustrial recycling of this waste plastic. To date, many of these PET hydrolases have been engineered for improved catalytic activity and stability, but current screening methods have limitations in screening large libraries, including under high-temperature conditions. Here, we developed a platform that can simultaneously interrogate PET hydrolase libraries of 104-105 variants (per round) for protein solubility, thermostability, and activity via paired, plate-based split green fluorescent protein and model substrate screens. We then applied this platform to improve the performance of a benchmark PET hydrolase, leaf-branch compost cutinase, by directed evolution. Our engineered enzyme exhibited higher catalytic activity relative to the benchmark, LCC-ICCG, on amorphous PET film coupon substrates (∼9.4% crystallinity) in pH-controlled bioreactors at both 65 °C (8.5% higher conversion at 48 h and 38% higher maximum rate, at 2.9% substrate loading) and 68 °C (11.2% higher conversion at 48 h and 43% higher maximum rate, at 16.5% substrate loading), up to 48 h, highlighting the potential of this screening platform to accelerate enzyme development for PET recycling.
Collapse
Affiliation(s)
- Thomas
M. Groseclose
- Bioscience
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- BOTTLE
Consortium, Golden, Colorado 80401, United States
| | - Erin A. Kober
- Bioscience
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- BOTTLE
Consortium, Golden, Colorado 80401, United States
| | - Matilda Clark
- BOTTLE
Consortium, Golden, Colorado 80401, United States
- Centre
for Enzyme Innovation, School of the Environmental and Life Sciences, University of Portsmouth, Portsmouth, PO1 2DT, U.K.
| | - Benjamin Moore
- BOTTLE
Consortium, Golden, Colorado 80401, United States
- Centre
for Enzyme Innovation, School of the Environmental and Life Sciences, University of Portsmouth, Portsmouth, PO1 2DT, U.K.
| | - Shounak Banerjee
- Bioscience
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- BOTTLE
Consortium, Golden, Colorado 80401, United States
| | - Victoria Bemmer
- BOTTLE
Consortium, Golden, Colorado 80401, United States
- Centre
for Enzyme Innovation, School of the Environmental and Life Sciences, University of Portsmouth, Portsmouth, PO1 2DT, U.K.
| | - Gregg T. Beckham
- BOTTLE
Consortium, Golden, Colorado 80401, United States
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Andrew R. Pickford
- BOTTLE
Consortium, Golden, Colorado 80401, United States
- Centre
for Enzyme Innovation, School of the Environmental and Life Sciences, University of Portsmouth, Portsmouth, PO1 2DT, U.K.
| | - Taraka T. Dale
- Bioscience
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- BOTTLE
Consortium, Golden, Colorado 80401, United States
| | - Hau B. Nguyen
- Bioscience
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- BOTTLE
Consortium, Golden, Colorado 80401, United States
| |
Collapse
|
2
|
Hung L, Terwilliger TC, Waldo GS, Nguyen HB. Engineering highly stable variants of Corynactis californica green fluorescent proteins. Protein Sci 2024; 33:e4886. [PMID: 38151801 PMCID: PMC10804665 DOI: 10.1002/pro.4886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/30/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023]
Abstract
Fluorescent proteins (FPs) are versatile biomarkers that facilitate effective detection and tracking of macromolecules of interest in real time. Engineered FPs such as superfolder green fluorescent protein (sfGFP) and superfolder Cherry (sfCherry) have exceptional refolding capability capable of delivering fluorescent readout in harsh environments where most proteins lose their native functions. Our recent work on the development of a split FP from a species of strawberry anemone, Corynactis californica, delivered pairs of fragments with up to threefold faster complementation than split GFP. We present the biophysical, biochemical, and structural characteristics of five full-length variants derived from these split C. californica GFP (ccGFP). These ccGFP variants are more tolerant under chemical denaturation with up to 8 kcal/mol lower unfolding free energy than that of the sfGFP. It is likely that some of these ccGFP variants could be suitable as biomarkers under more adverse environments where sfGFP fails to survive. A structural analysis suggests explanations of the variations in stabilities among the ccGFP variants.
Collapse
Affiliation(s)
- Li‐Wei Hung
- Bioscience DivisionMS M888, Los Alamos National LaboratoryLos AlamosNew MexicoUSA
| | - Thomas C. Terwilliger
- Bioscience DivisionMS M888, Los Alamos National LaboratoryLos AlamosNew MexicoUSA
- New Mexico ConsortiumLos AlamosNew MexicoUSA
| | - Geoffrey S. Waldo
- Bioscience DivisionMS M888, Los Alamos National LaboratoryLos AlamosNew MexicoUSA
| | - Hau B. Nguyen
- Bioscience DivisionMS M888, Los Alamos National LaboratoryLos AlamosNew MexicoUSA
| |
Collapse
|