1
|
Khan AUH, Liu Y, Naidu R, Fang C, Shon HK, Zhang H, Dharmarajan R. Changes in the Aggregation Behaviour of Zinc Oxide Nanoparticles Influenced by Perfluorooctanoic Acid, Salts, and Humic Acid in Simulated Waters. TOXICS 2024; 12:602. [PMID: 39195704 PMCID: PMC11359926 DOI: 10.3390/toxics12080602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024]
Abstract
The increasing utilization of zinc oxide nanoparticles (ZnO-NPs) in many consumer products is of concern due to their eventual release into the natural environment and induction of potentially adverse impacts. The behaviour and environmental impacts of ZnO-NPs could be altered through their interactions with environmentally coexisting substances. This study investigated the changes in the behaviour of ZnO-NPs in the presence of coexisting organic pollutants (such as perfluorooctanoic acid [PFOA]), natural organic substances (i.e., humic acid [HA]), and electrolytes (i.e., NaCl and CaCl2) in simulated waters. The size, shape, purity, crystallinity, and surface charge of the ZnO-NPs in simulated water after different interaction intervals (such as 1 day, 1 week, 2 weeks, and 3 weeks) at a controlled pH of 7 were examined using various characterization techniques. The results indicated alterations in the size (such as 162.4 nm, 1 day interaction to >10 µm, 3 weeks interaction) and zeta potential (such as -47.2 mV, 1 day interaction to -0.2 mV, 3 weeks interaction) of the ZnO-NPs alone and when PFOA, electrolytes, and HA were present in the suspension. Different influences on the size and surface charge of the nanoparticles were observed for fixed concentrations (5 mM) of the different electrolytes. The presence of HA-dispersed ZnO-NPs affected the zeta potential. Such dispersal effects were also observed in the presence of both PFOA and salts due to their large aliphatic carbon content and complex structure. Cation bridging effects, hydrophobic interactions, hydrogen bonding, electrostatic interactions, and van der Waals forces could be potential interaction forces responsible for the adsorption of PFOA. The presence of organic pollutants (PFOA) and natural organic substances (HA) can transform the surface characteristics and fate of ZnO-NPs in natural and sea waters.
Collapse
Affiliation(s)
- Anwar Ul Haq Khan
- Global Centre for Environmental Remediation (GCER), College of Engineering Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia; (A.U.H.K.); (R.N.); (C.F.)
- crc for Contamination Assessment and Remediation of the Environment (crcCARE), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Yanju Liu
- Global Centre for Environmental Remediation (GCER), College of Engineering Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia; (A.U.H.K.); (R.N.); (C.F.)
- crc for Contamination Assessment and Remediation of the Environment (crcCARE), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), College of Engineering Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia; (A.U.H.K.); (R.N.); (C.F.)
- crc for Contamination Assessment and Remediation of the Environment (crcCARE), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Cheng Fang
- Global Centre for Environmental Remediation (GCER), College of Engineering Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia; (A.U.H.K.); (R.N.); (C.F.)
- crc for Contamination Assessment and Remediation of the Environment (crcCARE), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ho Kyong Shon
- School of Civil and Environmental Engineering, University of Technology Sydney (UTS), City Campus, Broadway, Sydney, NSW 2007, Australia;
| | - Huiming Zhang
- Electron Microscope and X-ray (EMX) Unit, The University of Newcastle, Callaghan, NSW 2308, Australia;
| | - Rajarathnam Dharmarajan
- Australian Centre for Water and Environmental Biotechnology (ACWEB), The University of Queensland, Brisbane, QLD 4072, Australia;
| |
Collapse
|
2
|
Hamed I, Tsoukalas D, Jakobsen AN, Zhang J, Asimakopoulos AG, Seyitmuhammedov K, Lerfall J. Edible Sea urchins Echinus esculentus from Norwegian waters- Effect of season on nutritional quality and chemical contaminants. Food Chem 2024; 447:139032. [PMID: 38513489 DOI: 10.1016/j.foodchem.2024.139032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/06/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024]
Abstract
This study aimed to characterize Echinus esculentus gonads in terms of biometric parameters and nutritional quality at two sites in Mid-Norway at four different seasons. The chemical contamination of the gonads was also investigated for the first time through the evaluation of 28 macro- and trace elements and 32 components from the emerging and persistent group per- and polyfluoroalkyl substances (PFAS). The spawning period was determined in summer, given that the gonad index was the lowest in this season for both sites. Protein concentrations were constant (8%-10%). However, lipid contents (1%-3%) were noticed to be higher in gonads during autumn and winter. The gonads had high contents of PUFA mainly EPA and DHA, followed by SFA, and MUFA year around for both locations. E. esculentus gonads constitute a good source of fatty acids, macro, and trace elements. This species could also be a bioindicator for the monitoring of marine environments.
Collapse
Affiliation(s)
- Imen Hamed
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, 7491 Trondheim, Norway.
| | - Dionysios Tsoukalas
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Anita Nordeng Jakobsen
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Junjie Zhang
- Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | | | - Kyyas Seyitmuhammedov
- Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Jørgen Lerfall
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
3
|
Barreca S, Mancuso MMM, Sacristán D, Pace A, Savoca D, Orecchio S. Determination of Perfluorooctanoic Acid (PFOA) in the Indoor Dust Matter of the Sicily (Italy) Area: Analysis and Exposure Evaluations. TOXICS 2023; 12:28. [PMID: 38250983 PMCID: PMC10819494 DOI: 10.3390/toxics12010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/27/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024]
Abstract
Perfluorooctanoic acid (PFOA) in environmental matrices is increasingly being studied due to its environmental persistence, global occurrence, bioaccumulation, and associated human health risks. Some indoor environments can significantly impact the health of occupants due to pollutants in indoor air and household dust. To investigate the potential exposure of individuals to PFOA in specific confined environments, this study reports an analytical method and results concerning the determination of PFOA in household dust, used as a passive sampler. To the best of our knowledge, this paper represents one of the first studies concerning PFOA concentrations in indoor dust collected in the south of Italy, within the European region. A total of twenty-three dust samples were collected from two different areas of Sicily (Palermo and Milena), extracted, and analyzed by an UHPLC-QTOF-MS/MS system. Finally, PFOA exposure was estimated using a new index (Indoor PFOA Exposure Index, IPEX) that incorporates the PFOA levels in dust, exposure time, and the correlation between the PFOA in dust and blood. It was then compared across four different exposure groups, revealing that PFOA exposure for people working in chemistry laboratories was evaluated to be ten times higher than the exposure for homemakers.
Collapse
Affiliation(s)
- Salvatore Barreca
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95100 Catania, Italy
| | - Michele Marco Mizio Mancuso
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo (STEBICEF), Viale Delle Scienze, Ed. 17, 90100 Palermo, Italy (A.P.); (D.S.); (S.O.)
| | - Daniel Sacristán
- Department of Plant Biology, University of Valencia Córdoba, 46100 Valencia, Spain;
- Department of Soil and Environmental Quality Department, Centro de Investigaciones sobre Desertificación-CIDE (CSIC-Universitat de València-Generalitat Valenciana), Carretera Moncada-Náquera km 4.5, 46113 Valencia, Spain
| | - Andrea Pace
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo (STEBICEF), Viale Delle Scienze, Ed. 17, 90100 Palermo, Italy (A.P.); (D.S.); (S.O.)
| | - Dario Savoca
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo (STEBICEF), Viale Delle Scienze, Ed. 17, 90100 Palermo, Italy (A.P.); (D.S.); (S.O.)
- NBFC—National Biodiversity Future Center, 90123 Palermo, Italy
| | - Santino Orecchio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo (STEBICEF), Viale Delle Scienze, Ed. 17, 90100 Palermo, Italy (A.P.); (D.S.); (S.O.)
| |
Collapse
|
4
|
Abudayyak M, Karaman EF, Guler ZR, Ozden S. Effects of perfluorooctanoic acid on endoplasmic reticulum stress and lipid metabolism-related genes in human pancreatic cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 98:104083. [PMID: 36804611 DOI: 10.1016/j.etap.2023.104083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 01/24/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Perfluorooctanoic acid (PFOA) is environmentally persistent and has been classified by The International Cancer Research Agency (IARC) as a possible human pancreatic carcinogen. In this study, the epigenetic alteration, the changes in the expression levels of endoplasmic reticulum stress-related and metabolism-related genes, as well as DNA methyltransferase expression were investigated using RT-PCR and ELISA assays. PFOA induced a significant increase in the methylation ratio (5-mC%), impacted DNA methylation maintenance gene expression and decreased lipid metabolism-related genes except for PPARγ (≥ 13-fold increase). While PFOA induced the expression of ATF4 (≥ 5.41-folds), CHOP (≥ 5.41-folds) genes, it inhibited the expression of ATF6 (≥ 67.2%), GRP78 (≥ 64.3%), Elf2α (≥ 95.8%), IRE1 (≥ 95.5%), and PERK (≥ 91.7%) genes. It is thought that epigenetic mechanisms together with disruption in the glucose-lipid metabolism and changes in endoplasmic reticulum stress-related genes may play a key role in PFOA-induced pancreatic toxicity.
Collapse
Affiliation(s)
- Mahmoud Abudayyak
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Ecem Fatma Karaman
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Biruni University, Istanbul, Turkey
| | - Zeynep Rana Guler
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey; Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Turkey
| | - Sibel Ozden
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
5
|
Savoca D, Pace A, Arizza V, Arculeo M, Melfi R. Controlled uptake of PFOA in adult specimens of Paracentrotus lividus and evaluation of gene expression in their gonads and embryos. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:26094-26106. [PMID: 36350439 PMCID: PMC9995410 DOI: 10.1007/s11356-022-23940-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Perfluorooctanoic acid (PFOA) has been largely used in the manufacturing industry but a few years ago it turned out to be a dangerous pollutant which is now of concern for terrestrial and aquatic environments. Here, we investigated the bioaccumulation of PFOA in the sea urchin Paracentrotus lividus after exposure to different concentrations of the pollutant for 28 days. We observed rapid uptake of PFOA in the coelomic fluid collected weekly during the exposure period and high bioaccumulation in gonads at the end of the experiment. Interestingly, animals were also able to fast depurate when relocated to a clean environment. In addition, to assess the effect of PFOA on sea urchins' physiological pathways, we analysed the expression profile of some marker genes both in the gonads and in the embryos obtained from parents exposed to PFOA. Our results suggest that PFOA is a persistent, bioaccumulative compound that adversely affects the health of the exposed organisms and their offspring by causing significant changes in the expression of some key target genes and the occurrence of developmental anomalies in the embryos.
Collapse
Affiliation(s)
- Dario Savoca
- Dipartimento Di Scienze E Tecnologie Biologiche, Chimiche E Farmaceutiche (STEBICEF), Università Degli Studi Di Palermo, 90100, Palermo, Italy.
| | - Andrea Pace
- Dipartimento Di Scienze E Tecnologie Biologiche, Chimiche E Farmaceutiche (STEBICEF), Università Degli Studi Di Palermo, 90100, Palermo, Italy
| | - Vincenzo Arizza
- Dipartimento Di Scienze E Tecnologie Biologiche, Chimiche E Farmaceutiche (STEBICEF), Università Degli Studi Di Palermo, 90100, Palermo, Italy
| | - Marco Arculeo
- Dipartimento Di Scienze E Tecnologie Biologiche, Chimiche E Farmaceutiche (STEBICEF), Università Degli Studi Di Palermo, 90100, Palermo, Italy
| | - Raffaella Melfi
- Dipartimento Di Scienze E Tecnologie Biologiche, Chimiche E Farmaceutiche (STEBICEF), Università Degli Studi Di Palermo, 90100, Palermo, Italy
| |
Collapse
|
6
|
Road Runoff Characterization: Ecotoxicological Assessment Combined with (Non-)Target Screenings of Micropollutants for the Identification of Relevant Toxicants in the Dissolved Phase. WATER 2022. [DOI: 10.3390/w14040511] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Road runoff (RR) is an important vector of micropollutants towards groundwater and soils, threatening the environment and ecosystems. Through combined chemical and biological approaches, the purpose of this study was to get insights on specific toxicants present in RR from two sites differing by their traffic intensity and their toxicological risk assessment. Non-target screening was performed by HRMS on RR dissolved phase. Ecotoxicological risk was evaluated in a zebrafish embryos model and on rat liver mitochondrial respiratory chain. Specific HRMS fingerprints were obtained for each site, reflecting their respective traffic intensities. Several micropollutants, including 1,3-diphenylguanidine (DPG) and benzotriazole (BZT) were identified in greater concentrations at the high-traffic site. The origin of DPG was confirmed by analyzing HRMS fingerprints from shredded tires. RR samples from each site, DPG and BZT were of relatively low toxicity (no mortality) to zebrafish embryos, but all generated distinct and marked stress responses in the light–dark transition test, while DPG/BZT mixes abolished this effect. The moderate-traffic RR and DPG inhibited mitochondrial complex I. Our study highlights (i) the unpredictability of pollutants cocktail effect and (ii) the importance of a multi-approaches strategy to characterize environmental matrices, essential for their management at the source and optimization of depollution devices.
Collapse
|
7
|
Liu C, Guo Y, Wang B, Chen L, Xie K, Yang C. Establishment and Validation of a GC-MS/MS Method for the Quantification of Penicillin G Residues in Poultry Eggs. Foods 2021; 10:foods10112735. [PMID: 34829016 PMCID: PMC8621557 DOI: 10.3390/foods10112735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/26/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022] Open
Abstract
A simple and sensitive gas chromatography-tandem mass spectrometry (GC-MS/MS) method was established for the quantitative screening of penicillin G residues in chicken and duck eggs (whole egg, yolk and albumen). The analyte was separated on a TG-1MS capillary column (30.0 m × 0.25 mm i.d., 0.25 μm) with an external calibration method and electron impact (EI) ionization. Samples were pretreated using an accelerated solvent extraction (ASE) procedure followed by solid-phase extraction (SPE) on HLB cartridges (60 mg/3 mL). The derivative, which was safer and easier to store than penicillin G, was obtained by reacting trimethylsilyl diazomethane (TMSD) with penicillin G. The method was validated by the following parameters: linearity, accuracy, precision, limit of detection (LOD) and limit of quantification (LOQ). The matrix-matched calibration curves had good linearity (R2 ≥ 0.9994) within the concentration range of LOQ-200.0 µg/kg for penicillin G in the sample matrices. In the same concentration range, the accuracy, in terms of recovery, was 80.31-94.50%; the relative standard deviation (RSD), intra-day RSD and inter-day RSD ranged from 1.24 to 3.44%, 2.13 to 4.82% and 2.74 to 6.13%, respectively. The LODs and LOQs of penicillin G in the matrices were in the ranges of 1.70-3.20 and 6.10-8.50 μg/kg, respectively. The applicability of the GC-MS/MS method was demonstrated by the determination of poultry eggs obtained from local markets with no penicillin G residues.
Collapse
Affiliation(s)
- Chujun Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (C.L.); (Y.G.)
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China; (B.W.); (L.C.)
| | - Yawen Guo
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (C.L.); (Y.G.)
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China; (B.W.); (L.C.)
| | - Bo Wang
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China; (B.W.); (L.C.)
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Lan Chen
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China; (B.W.); (L.C.)
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Kaizhou Xie
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (C.L.); (Y.G.)
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China; (B.W.); (L.C.)
- Correspondence: ; Tel.: +86-139-5275-0925
| | - Chenggen Yang
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China;
| |
Collapse
|