Zhang Q, Chen M, Li W, Liang C, Huang X, Hu H, Huang Z, Gan T, Zhang Y. Effects of the addition of cassava starch and the size of water clusters on physicochemical and cooking properties of rice noodles.
Food Chem 2025;
470:142665. [PMID:
39733622 DOI:
10.1016/j.foodchem.2024.142665]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/30/2024] [Accepted: 12/23/2024] [Indexed: 12/31/2024]
Abstract
It is meaningful to explore the addition of additives and the structural characteristics of water on the quality of rice noodles. Herein, the effects of the addition of cassava starch and the size of water clusters on physicochemical and cooking properties of rice noodles were systematically studied. The addition of 25 % cassava starch effectively enhanced the swelling performance and textural properties of rice noodles. In comparison to non-activated water with large water clusters (LW), activated water with small water clusters (SW) significantly affected the interaction between water and starch molecules. Compared with LW-RN-25CS (rice noodles made with LW and 25 % cassava starch), SW-RN-25CS (rice noodles made with SW and 25 % cassava starch) presented better textural properties, including hardness, springiness, and adhesiveness. The rehydration time of SW-RN-25CS decreased from 12.31 ± 0.25 min (LW-RN-25CS) to 10.92 ± 0.46 min. This study provides reliable strategy and technology to produce high-quality rice noodles.
Collapse