1
|
Chiang ACY, Ježek J, Mu P, Di Y, Klucnika A, Jabůrek M, Ježek P, Ma H. Two mitochondrial DNA polymorphisms modulate cardiolipin binding and lead to synthetic lethality. Nat Commun 2024; 15:611. [PMID: 38242869 PMCID: PMC10799063 DOI: 10.1038/s41467-024-44964-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/10/2024] [Indexed: 01/21/2024] Open
Abstract
Genetic screens have been used extensively to probe interactions between nuclear genes and their impact on phenotypes. Probing interactions between mitochondrial genes and their phenotypic outcome, however, has not been possible due to a lack of tools to map the responsible polymorphisms. Here, using a toolkit we previously established in Drosophila, we isolate over 300 recombinant mitochondrial genomes and map a naturally occurring polymorphism at the cytochrome c oxidase III residue 109 (CoIII109) that fully rescues the lethality and other defects associated with a point mutation in cytochrome c oxidase I (CoIT300I). Through lipidomics profiling, biochemical assays and phenotypic analyses, we show that the CoIII109 polymorphism modulates cardiolipin binding to prevent complex IV instability caused by the CoIT300I mutation. This study demonstrates the feasibility of genetic interaction screens in animal mitochondrial DNA. It unwraps the complex intra-genomic interplays underlying disorders linked to mitochondrial DNA and how they influence disease expression.
Collapse
Affiliation(s)
- Ason C Y Chiang
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
- Wellcome/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Jan Ježek
- Wellcome/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
- University College London Queen Square Institute of Neurology, Royal Free Hospital, Rowland Hill Street, London, NW3 2PF, UK
| | - Peiqiang Mu
- Wellcome/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Tianhe District, 510642, Guangzhou, Guangdong, P. R. China
| | - Ying Di
- Wellcome/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Anna Klucnika
- Wellcome/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
- Laverock Therapeutics, Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage, SG1 2FX, UK
| | - Martin Jabůrek
- Laboratory of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Petr Ježek
- Laboratory of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Hansong Ma
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK.
- Wellcome/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge, CB2 1QN, UK.
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK.
| |
Collapse
|
2
|
Alkhaldi HA, Phan DH, Vik SB. Analysis of Human Clinical Mutations of Mitochondrial ND1 in a Bacterial Model System for Complex I. Life (Basel) 2022; 12:1934. [PMID: 36431069 PMCID: PMC9696053 DOI: 10.3390/life12111934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
The most common causes of mitochondrial dysfunction and disease include mutations in subunits and assembly factors of Complex I. Numerous mutations in the mitochondrial gene ND1 have been identified in humans. Currently, a bacterial model system provides the only method for rapid construction and analysis of mutations in homologs of human ND1. In this report, we have identified nine mutations in human ND1 that are reported to be pathogenic and are located at subunit interfaces. Our hypothesis was that these mutations would disrupt Complex I assembly. Seventeen mutations were constructed in the homologous nuoH gene in an E. coli model system. In addition to the clinical mutations, alanine substitutions were constructed in order to distinguish between a deleterious effect from the introduction of the mutant residue and the loss of the original residue. The mutations were moved to an expression vector containing all thirteen genes of the E. coli nuo operon coding for Complex I. Membrane vesicles were prepared and rates of deamino-NADH oxidase activity and proton translocation were measured. Samples were also tested for assembly by native gel electrophoresis and for expression of NuoH by immunoblotting. A range of outcomes was observed: Mutations at four of the sites allow normal assembly with moderate activity (50−76% of wild type). Mutations at the other sites disrupt assembly and/or activity, and in some cases the outcomes depend upon the amino acid introduced. In general, the outcomes are consistent with the proposed pathogenicity in humans.
Collapse
Affiliation(s)
| | | | - Steven B. Vik
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275, USA
| |
Collapse
|
3
|
Mitochondrial DNA population variation is not associated with Alzheimer's in the Japanese population: A consistent finding across global populations. PLoS One 2022; 17:e0276169. [PMID: 36264923 PMCID: PMC9584534 DOI: 10.1371/journal.pone.0276169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/02/2022] [Indexed: 11/06/2022] Open
Abstract
Several mitochondrial DNA (mtDNA) haplogroup association studies have suggested that common mtDNA variants are associated with multifactorial diseases, including Alzheimer’s disease (AD). However, such studies have also produced conflicting results. A new mtDNA association model, the ‘variant load model’ (VLM), has been applied to multiple disease phenotypes. Application of the VLM in a 2017 study failed to find different variant loads in AD patients compared to controls, in two cohorts of European origin. The study also suggested a lower variant load in healthy elderly individuals, but could offer no replicate cohort to support this observation. Here, the VLM is applied to Japanese mtDNA sequences; in doing so, we explored the role of mtDNA variation in AD and ageing in a different global population. Consistent with the previous findings using the VLM in two populations of European origin, we found no evidence for an association between rarer, non-haplogroup associated variation and the development of AD. However, the result in the context of ageing that suggested those with fewer mildly deleterious mutations might undergo healthier ageing, was not replicated. In contrast to our previous study, our present results suggest that those living to advanced old age may harbour more mildly deleterious mtDNA variations. Importantly our analysis showed this finding is not primarily being driven by many rare population variants dispersed across the mtDNA, but by a few more frequent variants with high MutPred scores. It is suggested the variants in question do not exert a mildly deleterious effect in their most frequent haplogroup context.
Collapse
|
4
|
Müller-Nedebock AC, Pfaff AL, Pienaar IS, Kõks S, van der Westhuizen FH, Elson JL, Bardien S. Mitochondrial DNA variation in Parkinson’s disease: Analysis of “out-of-place” population variants as a risk factor. Front Aging Neurosci 2022; 14:921412. [PMID: 35912088 PMCID: PMC9330142 DOI: 10.3389/fnagi.2022.921412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/30/2022] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial DNA (mtDNA), a potential source of mitochondrial dysfunction, has been implicated in Parkinson’s disease (PD). However, many previous studies investigating associations between mtDNA population variation and PD reported inconsistent or contradictory findings. Here, we investigated an alternative hypothesis to determine whether mtDNA variation could play a significant role in PD risk. Emerging evidence suggests that haplogroup-defining mtDNA variants may have pathogenic potential if they occur “out-of-place” on a different maternal lineage. We hypothesized that the mtDNA of PD cases would be enriched for out-of-place variation in genes encoding components of the oxidative phosphorylation complexes. We tested this hypothesis with a unique dataset comprising whole mitochondrial genomes of 70 African ancestry PD cases, two African ancestry control groups (n = 78 and n = 53) and a replication group of 281 European ancestry PD cases and 140 controls from the Parkinson’s Progression Markers Initiative cohort. Significantly more African ancestry PD cases had out-of-place variants than controls from the second control group (P < 0.0125), although this association was not observed in the first control group nor the replication group. As the first mtDNA study to include African ancestry PD cases and to explore out-of-place variation in a PD context, we found evidence that such variation might be significant in this context, thereby warranting further replication in larger cohorts.
Collapse
Affiliation(s)
- Amica C. Müller-Nedebock
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council, Stellenbosch University Genomics of Brain Disorders Research Unit, Stellenbosch University, Cape Town, South Africa
| | - Abigail L. Pfaff
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, Australia
| | - Ilse S. Pienaar
- Institute of Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Sulev Kõks
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, Australia
| | | | - Joanna L. Elson
- Human Metabolomics, North-West University, Potchefstroom, South Africa
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Soraya Bardien
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council, Stellenbosch University Genomics of Brain Disorders Research Unit, Stellenbosch University, Cape Town, South Africa
- *Correspondence: Soraya Bardien,
| |
Collapse
|
5
|
Zhang F, Dang QCL, Vik SB. Human clinical mutations in mitochondrially encoded subunits of Complex I can be successfully modeled in E. coli. Mitochondrion 2022; 64:59-72. [PMID: 35306226 PMCID: PMC9035099 DOI: 10.1016/j.mito.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/21/2022] [Accepted: 03/15/2022] [Indexed: 11/28/2022]
Abstract
Respiratory Complex I is the site of a large fraction of the mutations that appear to cause mitochondrial disease. Seven of its subunits are mitochondrially encoded, and therefore, such mutants are particularly difficult to construct in cell-culture model systems. We have selected 13 human clinical mutations found in ND2, ND3, ND4, ND4L, ND5 and ND6 that are generally found at subunit interfaces, and not in critical residues. These mutations have been modeled in E. coli subunits of Complex I, nuoN, nuoA, nuoM, nuoK, nuoL, and nuoJ, respectively. All mutants were expressed from a plasmid encoding the entire nuo operon, and membrane vesicles were analyzed for deamino-NADH oxidase activity, and proton translocation activity. ND5 mutants were also analyzed using a time-delayed expression system, recently described by this lab. Other mutants were analyzed for the ability to associate in subcomplexes, after expression of subsets of the genes. For most mutants there was a positive correlation between those that were previously determined to be pathogenic, or likely to be pathogenic, and those that we found with compromised Complex I activity or subunit interactions in E. coli. In conclusion, this approach provides another way to explore the deleterious effects of human mitochondrial mutations, and it can contribute to molecular understanding of such mutations.
Collapse
Affiliation(s)
- Fang Zhang
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275-0376, USA
| | - Quynh-Chi L Dang
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275-0376, USA
| | - Steven B Vik
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275-0376, USA.
| |
Collapse
|