1
|
Otaki N, Motomura Y, Terooatea T, Thomas Kelly S, Mochizuki M, Takeno N, Koyasu S, Tamamitsu M, Sugihara F, Kikuta J, Kitamura H, Shiraishi Y, Miyanohara J, Nagano Y, Saita Y, Ogura T, Asano K, Minoda A, Moro K. Activation of ILC2s through constitutive IFNγ signaling reduction leads to spontaneous pulmonary fibrosis. Nat Commun 2023; 14:8120. [PMID: 38097562 PMCID: PMC10721793 DOI: 10.1038/s41467-023-43336-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/07/2023] [Indexed: 12/17/2023] Open
Abstract
Pulmonary fibrosis (PF), a condition characterized by inflammation and collagen deposition in the alveolar interstitium, causes dyspnea and fatal outcomes. Although the bleomycin-induced PF mouse model has improved our understanding of exogenous factor-induced fibrosis, the mechanism governing endogenous factor-induced fibrosis remains unknown. Here, we find that Ifngr1-/-Rag2-/- mice, which lack the critical suppression factor for group 2 innate lymphoid cells (ILC2), develop PF spontaneously. The onset phase of fibrosis includes ILC2 subpopulations with a high Il1rl1 (IL-33 receptor) expression, and fibrosis does not develop in ILC-deficient or IL-33-deficient mice. Although ILC2s are normally localized near bronchioles and blood vessels, ILC2s are increased in fibrotic areas along with IL-33 positive fibroblasts during fibrosis. Co-culture analysis shows that activated-ILC2s directly induce collagen production from fibroblasts. Furthermore, increased IL1RL1 and decreased IFNGR1 expressions are confirmed in ILC2s from individuals with idiopathic PF, highlighting the applicability of Ifngr1-/-Rag2-/- mice as a mouse model for fibrosis research.
Collapse
Affiliation(s)
- Natsuko Otaki
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Japan
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Yasutaka Motomura
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Japan
- Laboratory for Innate Immune Systems, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
- Laboratory for Innate Immune Systems, Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
| | - Tommy Terooatea
- Laboratory for Cellular Epigenomics, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Japan
| | - S Thomas Kelly
- Laboratory for Cellular Epigenomics, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Japan
| | - Miho Mochizuki
- Laboratory for Immune Cell Systems, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Japan
| | - Natsuki Takeno
- Laboratory for Immune Cell Systems, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Japan
| | - Shigeo Koyasu
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
- Laboratory for Immune Cell Systems, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Japan
| | - Miu Tamamitsu
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Fuminori Sugihara
- Central Instrumentation Laboratory, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Junichi Kikuta
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan
| | - Hideya Kitamura
- Kanagawa Cardiovascular and Respiratory Center, Kanagawa, Japan
| | - Yoshiki Shiraishi
- Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Jun Miyanohara
- Discovery Accelerator, Astellas Pharma Inc., Ibaraki, Japan
| | - Yuji Nagano
- Discovery Accelerator, Astellas Pharma Inc., Ibaraki, Japan
| | - Yuji Saita
- Discovery Accelerator, Astellas Pharma Inc., Ibaraki, Japan
| | - Takashi Ogura
- Kanagawa Cardiovascular and Respiratory Center, Kanagawa, Japan
| | - Koichiro Asano
- Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Aki Minoda
- Laboratory for Cellular Epigenomics, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Japan
- Department of Cell Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, Netherlands
| | - Kazuyo Moro
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Japan.
- Laboratory for Innate Immune Systems, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan.
- Laboratory for Innate Immune Systems, Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan.
- Laboratory for Innate Immune Systems, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.
| |
Collapse
|
2
|
Principi L, Ferrini E, Ciccimarra R, Pagani L, Chinello C, Previtali P, Smith A, Villetti G, Zoboli M, Ravanetti F, Stellari FF, Magni F, Piga I. Proteomic Fingerprint of Lung Fibrosis Progression and Response to Therapy in Bleomycin-Induced Mouse Model. Int J Mol Sci 2023; 24:ijms24054410. [PMID: 36901840 PMCID: PMC10002924 DOI: 10.3390/ijms24054410] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease characterized by the aberrant accumulation of extracellular matrix in the lungs. nintedanib is one of the two FDA-approved drugs for IPF treatment; however, the exact pathophysiological mechanisms of fibrosis progression and response to therapy are still poorly understood. In this work, the molecular fingerprint of fibrosis progression and response to nintedanib treatment have been investigated by mass spectrometry-based bottom-up proteomics in paraffin-embedded lung tissues from bleomycin-induced (BLM) pulmonary fibrosis mice. Our proteomics results unveiled that (i) samples clustered depending on the tissue fibrotic grade (mild, moderate, and severe) and not on the time course after BLM treatment; (ii) the dysregulation of different pathways involved in fibrosis progression such as the complement coagulation cascades, advanced glycation end products (AGEs) and their receptors (RAGEs) signaling, the extracellular matrix-receptor interaction, the regulation of actin cytoskeleton, and ribosomes; (iii) Coronin 1A (Coro1a) as the protein with the highest correlation when evaluating the progression of fibrosis, with an increased expression from mild to severe fibrosis; and (iv) a total of 10 differentially expressed proteins (padj-value ≤ 0.05 and Fold change ≤-1.5 or ≥1.5), whose abundance varied in the base of the severity of fibrosis (mild and moderate), were modulated by the antifibrotic treatment with nintedanib, reverting their trend. Notably, nintedanib significantly restored lactate dehydrogenase B (Ldhb) expression but not lactate dehydrogenase A (Ldha). Notwithstanding the need for further investigations to validate the roles of both Coro1a and Ldhb, our findings provide an extensive proteomic characterization with a strong relationship with histomorphometric measurements. These results unveil some biological processes in pulmonary fibrosis and drug-mediated fibrosis therapy.
Collapse
Affiliation(s)
- Lucrezia Principi
- Clinical Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, 20854 Monza, Italy
| | - Erica Ferrini
- Department of Veterinary Science, University of Parma, 43122 Parma, Italy
| | - Roberta Ciccimarra
- Department of Veterinary Science, University of Parma, 43122 Parma, Italy
| | - Lisa Pagani
- Clinical Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, 20854 Monza, Italy
| | - Clizia Chinello
- Clinical Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, 20854 Monza, Italy
| | - Paolo Previtali
- Clinical Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, 20854 Monza, Italy
| | - Andrew Smith
- Clinical Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, 20854 Monza, Italy
| | - Gino Villetti
- Experimental Pharmacology & Translational Science Department, Chiesi Farmaceutici S.p.A., 43122 Parma, Italy
| | - Matteo Zoboli
- Department of Veterinary Science, University of Parma, 43122 Parma, Italy
| | | | - Franco Fabio Stellari
- Experimental Pharmacology & Translational Science Department, Chiesi Farmaceutici S.p.A., 43122 Parma, Italy
- Correspondence: (F.F.S.); (I.P.)
| | - Fulvio Magni
- Clinical Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, 20854 Monza, Italy
| | - Isabella Piga
- Clinical Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, 20854 Monza, Italy
- Correspondence: (F.F.S.); (I.P.)
| |
Collapse
|
3
|
Wu Y, Zhong L, Qiu L, Dong L, Yang L, Chen L. A potential three-gene-based diagnostic signature for idiopathic pulmonary fibrosis. Front Genet 2023; 13:985217. [PMID: 36685820 PMCID: PMC9857386 DOI: 10.3389/fgene.2022.985217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 11/30/2022] [Indexed: 01/09/2023] Open
Abstract
Background: Idiopathic pulmonary fibrosis (IPF) is a life-threatening disease whose etiology remains unknown. This study aims to explore diagnostic biomarkers and pathways involved in IPF using bioinformatics analysis. Methods: IPF-related gene expression datasets were retrieved and downloaded from the NCBI Gene Expression Omnibus database. Differentially expressed genes (DEGs) were screened, and weighted correlation network analysis (WGCNA) was performed to identify key module and genes. Functional enrichment analysis was performed on genes in the clinically significant module. Then least absolute shrinkage and selection operator (LASSO) logistic regression and support vector machine-recursive feature elimination (SVM-RFE) algorithms were run to screen candidate biomarkers. The expression and diagnostic value of the biomarkers in IPF were further validated in external test datasets (GSE110147). Results: 292 samples and 1,163 DEGs were screened to construct WGCNA. In WGCNA, the blue module was identified as the key module, and 59 genes in this module correlated highly with IPF. Functional enrichment analysis of blue module genes revealed the importance of extracellular matrix-associated pathways in IPF. IL13RA2, CDH3, and COMP were identified as diagnostic markers of IPF via LASSO and SVM-RFE. These genes showed good diagnostic value for IPF and were significantly upregulated in IPF. Conclusion: This study indicates that IL13RA2, CDH3, and COMP could serve as diagnostic signature for IPF and might offer new insights in the underlying diagnosis of IPF.
Collapse
Affiliation(s)
- Yi Wu
- Division of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China,NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
| | - Lin Zhong
- Division of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China,NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
| | - Li Qiu
- Division of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China,NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
| | - Liqun Dong
- Division of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China,NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
| | - Lin Yang
- Division of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China,NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China,*Correspondence: Lin Yang, ; Lina Chen,
| | - Lina Chen
- Division of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China,NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China,*Correspondence: Lin Yang, ; Lina Chen,
| |
Collapse
|
4
|
Sun YZ, Hu YF, Zhang Y, Wei SY, Yang BL, Xu YP, Rong ZL, Wang D, Yang B. FibROAD: a manually curated resource for multi-omics level evidence integration of fibrosis research. Database (Oxford) 2022; 2022:6547638. [PMID: 35277958 PMCID: PMC9216539 DOI: 10.1093/database/baac015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/13/2022] [Accepted: 03/02/2022] [Indexed: 12/13/2022]
Abstract
Organ fibrosis represents a vital health threat that substantially contributes to yearly mortality rates. While a considerable amount of research has been conducted on fibrosis, these reports have only focused on specific organs as affected within distinct disorders. Accordingly, results from such studies have been unable to provide a comprehensive understanding of the pathological processes involved. Here, we describe the development of FibROAD, an open-access database that integrates evidence from fibrosis-associated disorders as obtained from both the literature and multi-omics data. This resource will greatly assist both researchers and clinicians in the comprehension and treatment of this condition. FibROAD currently involves an assembly of 232 strong evidence-based fibrosis-related genes (FRGs) as garnered from 909 PubMed publications and contains lists of multi-omics data from > 4000 samples including RNA-seq, single-cell RNA-seq, miRNA-seq, ChIP-seq, ATAC-seq MeDIP-seq and MBD-seq as obtained from 17 different organs in 5 species. Results from integrative analyses as obtained using FibROAD have demonstrated that FRGs can be indicators for a wide range of organ fibrosis and reveal potential pro-fibrotic candidate genes for fibrosis research. In conclusion, FibROAD serves as a convenient platform where researchers can acquire integrated evidence and a more comprehensive understanding of fibrosis-related disorders. Database URL https://www.fibroad.org
Collapse
Affiliation(s)
| | - Yong-Fei Hu
- Dermatology Hospital, Southern Medical University, No. 2 Lujing Road, Yuexiu, Guangzhou 5100091, China
| | - Yan Zhang
- Dermatology Hospital, Southern Medical University, No. 2 Lujing Road, Yuexiu, Guangzhou 5100091, China
| | - Shu-Yi Wei
- Dermatology Hospital, Southern Medical University, No. 2 Lujing Road, Yuexiu, Guangzhou 5100091, China
| | - Bei-Lei Yang
- Dermatology Hospital, Southern Medical University, No. 2 Lujing Road, Yuexiu, Guangzhou 5100091, China
| | - Ying-Ping Xu
- Dermatology Hospital, Southern Medical University, No. 2 Lujing Road, Yuexiu, Guangzhou 5100091, China
| | - Zhi-Li Rong
- Dermatology Hospital, Southern Medical University, No. 2 Lujing Road, Yuexiu, Guangzhou 5100091, China.,Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, No. 1023-1063 Southern shatai Road, Baiyum, Guangzhou 510515, China.,State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), No. 1023-1063 Southern shatai Road, Baiyum, Guangzhou 510515, China
| | - Dong Wang
- Dermatology Hospital, Southern Medical University, No. 2 Lujing Road, Yuexiu, Guangzhou 5100091, China.,Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, No. 1023-1063 Southern Shatai Road, Baiyum, Guangzhou 510515, China
| | - Bin Yang
- Dermatology Hospital, Southern Medical University, No. 2 Lujing Road, Yuexiu, Guangzhou 5100091, China
| |
Collapse
|
5
|
He J, Li X. Identification and Validation of Aging-Related Genes in Idiopathic Pulmonary Fibrosis. Front Genet 2022; 13:780010. [PMID: 35211155 PMCID: PMC8863089 DOI: 10.3389/fgene.2022.780010] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/19/2022] [Indexed: 12/13/2022] Open
Abstract
Aging plays a significant role in the occurrence and development of idiopathic pulmonary fibrosis (IPF). In this study, we aimed to identify and verify potential aging-associated genes involved in IPF using bioinformatic analysis. The mRNA expression profile dataset GSE150910 available in the Gene Expression Omnibus (GEO) database and R software were used to identify the differentially expressed aging-related genes involved in IPF. Hub gene expression was validated by other GEO datasets. Gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed on differentially expressed aging-related genes. Subsequently, aging-related genes were further screened using three techniques (least absolute shrinkage and selection operator (LASSO) regression, support vector machine, and random forest), and the receiver operating characteristic curves were plotted based on screening results. Finally, real-time quantitative polymerase chain reaction (qRT-PCR) was performed to verify the RNA expression of the six differentially expressed aging-related genes using the blood samples of patients with IPF and healthy individuals. Sixteen differentially expressed aging-related genes were detected, of which the expression of 12 were upregulated and four were downregulated. GO and KEGG enrichment analyses indicated the presence of several enriched terms related to senescence and apoptotic mitochondrial changes. Further screening by LASSO regression, support vector machine, and random forest identified six genes (IGF1, RET, IGFBP2, CDKN2A, JUN, and TFAP2A) that could serve as potential diagnostic biomarkers for IPF. Furthermore, qRT-PCR analysis indicated that among the above-mentioned six aging-related genes, only the expression levels of IGF1, RET, and IGFBP2 in patients with IPF and healthy individuals were consistent with the results of bioinformatic analysis. In conclusion, bioinformatics analysis identified 16 potential aging-related genes associated with IPF, and clinical sample validation suggested that among these, IGF1, RET, and IGFBP2 might play a role in the incidence and prognosis of IPF. Our findings may help understand the pathogenesis of IPF.
Collapse
Affiliation(s)
- Jie He
- Clinical Medical College of Chengdu Medical College, Chengdu, China.,Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xiaoyan Li
- Clinical Medical College of Chengdu Medical College, Chengdu, China.,Department of Endocrinology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|