Diagnostic performance of automated, streamlined, daily updated exome analysis in patients with neurodevelopmental delay.
Mol Med 2022;
28:38. [PMID:
35346031 PMCID:
PMC8962085 DOI:
10.1186/s10020-022-00464-x]
[Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/15/2022] [Indexed: 11/29/2022] Open
Abstract
Background
The diagnostic yield of whole-exome sequencing (WES) varies from 30%–50% among patients with mild to severe neurodevelopmental delay (NDD)/intellectual disability (ID). Routine retrospective reanalysis of undiagnosed patients has increased the total diagnostic yield by 10–15%. Here, we performed proband-only WES of 1065 patients with NDD/ID and applied a prospective, daily reanalysis automated pipeline to patients without clinically significant variants to facilitate diagnoses.
Methods
The study included 1065 consecutive patients from 1056 nonconsanguineous unrelated families from 10 multimedical centers in South Korea between April 2018 and August 2021. WES data were analyzed daily using automatically updated databases with variant classification and symptom similarity scoring systems.
Results
At the initial analysis, 402 patients from 1056 unrelated families (38.0%, 402/1,056 families) had a positive genetic diagnosis. Daily prospective, automated reanalysis resulted in the identification of 34 additional diagnostic variants in 31 patients (3%), which increased our molecular diagnostic yield to 41% (433/1056 families). Among these 31 patients, 26 were diagnosed with 23 different diseases that were newly discovered after 2019. The time interval between the first analysis and the molecular diagnosis by reanalysis was 1.2 ± 0.9 years, which was shorter in the patients enrolled during the latter part of the study period.
Conclusion
Daily updated databases and reanalysis systems enhance the diagnostic performance in patients with NDD/ID, contributing to the rapid diagnosis of undiagnosed patients by applying the latest molecular genetic information.
Supplementary Information
The online version contains supplementary material available at 10.1186/s10020-022-00464-x.
Collapse