1
|
Yuan Y, Wang Y, Yan Y, Kim E, Bai J, Zhao Y, Ma Q, Gu W, Song H. FBLN1 regulates ferroptosis in acute respiratory distress syndrome by reducing free ferrous iron by inhibiting the TGF-β/Smad pathway. PLoS One 2024; 19:e0314750. [PMID: 39671383 PMCID: PMC11643259 DOI: 10.1371/journal.pone.0314750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/17/2024] [Indexed: 12/15/2024] Open
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) / acute lung injury (ALI) is a serious medical disease characterized by pulmonary dysfunction and inflammation. This study aims to determine the main molecular modules linked to ARDS and investigate the role of Fibulin-1 (FBLN1) in regulating ferroptosis in ARDS. METHODS Weighted Gene Co-expression Network Analysis (WGCNA) was employed on the GSE263867 dataset to find key modules associated with ALI. Differentially expressed genes (DEGs) and protein-protein interaction (PPI) networks were analyzed. MLE-12 cells were treated with lipopolysaccharide (LPS) to induce ferroptosis. In vitro studies were conducted to investigate the effects of FBLN1 and Transforming Growth Factor Beta 1 (TGF-β) overexpression on cell viability, oxidative stress markers, and ferroptosis-related proteins. RESULTS WGCNA identified the turquoise module as significantly negatively correlated with ARDS. Five key overlapping genes (GRIA1, OGN, COL14A1, FBLN1, and COL6A3) were significantly downregulated in ARDS samples. LPS treatment induced ferroptosis in MLE-12 cells, indicated by increased malondialdehyde (MDA), lipid reactive oxygen species (ROS), and ferrous iron (Fe2⁺) levels, and decreased cell viability and glutathione (GSH) levels. FBLN1 overexpression partially reversed these effects. Additionally, FBLN1 inhibited the TGF-β/Smad signaling pathway, as shown by decreased TGF-β and p-Smad protein levels. TGF-β overexpression exacerbated LPS-induced oxidative stress and ferroptosis, reducing cell viability and GSH levels. FBLN1 overexpression counteracted this effect, suggesting antagonistic roles for FBLN1 and TGF-β in regulating ferroptosis. CONCLUSION This study highlights FBLN1 as a critical regulator of ferroptosis in ARDS. Targeting the TGF-β/Smad pathway to modulate FBLN1 expression offers a potential therapeutic strategy to alleviate oxidative stress and mitigate pulmonary injury in inflammatory lung diseases.
Collapse
Affiliation(s)
- Yaping Yuan
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Youbo Wang
- Department of Thoracic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yufeng Yan
- Department of Neurosurgery, Jinshan Hospital, Fudan University, Zhujing Town, Jinshan District, Shanghai, China
| | - Edward Kim
- Department of Immunology, DICAT National Biomedical Computation Centre, Vancouver, BC, Canada
| | - Jin Bai
- Department of Immunology, DICAT National Biomedical Computation Centre, Vancouver, BC, Canada
- CRT Medical Union, Time International, Beijing, China
| | - Yang Zhao
- Department of Immunology, DICAT National Biomedical Computation Centre, Vancouver, BC, Canada
- CRT Medical Union, Time International, Beijing, China
| | - Qinyun Ma
- Department of Thoracic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenchao Gu
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Haihan Song
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong New Area People’s Hospital, Shanghai, China
- Department of Immunology, DICAT National Biomedical Computation Centre, Vancouver, BC, Canada
- Central Lab, Shanghai Key Laboratory of Pathogenic Fungi Medical Testing, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| |
Collapse
|
2
|
Aravindraja C, Jeepipalli S, Duncan WD, Vekariya KM, Rahaman SO, Chan EKL, Kesavalu L. Streptococcus gordonii Supragingival Bacterium Oral Infection-Induced Periodontitis and Robust miRNA Expression Kinetics. Int J Mol Sci 2024; 25:6217. [PMID: 38892405 PMCID: PMC11172800 DOI: 10.3390/ijms25116217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Streptococcus gordonii (S. gordonii, Sg) is one of the early colonizing, supragingival commensal bacterium normally associated with oral health in human dental plaque. MicroRNAs (miRNAs) play an important role in the inflammation-mediated pathways and are involved in periodontal disease (PD) pathogenesis. PD is a polymicrobial dysbiotic immune-inflammatory disease initiated by microbes in the gingival sulcus/pockets. The objective of this study is to determine the global miRNA expression kinetics in S. gordonii DL1-infected C57BL/6J mice. All mice were randomly divided into four groups (n = 10 mice/group; 5 males and 5 females). Bacterial infection was performed in mice at 8 weeks and 16 weeks, mice were euthanized, and tissues harvested for analysis. We analyzed differentially expressed (DE) miRNAs in the mandibles of S. gordonii-infected mice. Gingival colonization/infection by S. gordonii and alveolar bone resorption (ABR) was confirmed. All the S. gordonii-infected mice at two specific time points showed bacterial colonization (100%) in the gingival surface, and a significant increase in mandible and maxilla ABR (p < 0.0001). miRNA profiling revealed 191 upregulated miRNAs (miR-375, miR-34b-5p) and 22 downregulated miRNAs (miR-133, miR-1224) in the mandibles of S. gordonii-infected mice at the 8-week mark. Conversely, at 16 weeks post-infection, 10 miRNAs (miR-1902, miR-203) were upregulated and 32 miRNAs (miR-1937c, miR-720) were downregulated. Two miRNAs, miR-210 and miR-423-5p, were commonly upregulated, and miR-2135 and miR-145 were commonly downregulated in both 8- and 16-week-infected mice mandibles. Furthermore, we employed five machine learning (ML) algorithms to assess how the number of miRNA copies correlates with S. gordonii infections in mice. In the ML analyses, miR-22 and miR-30c (8-week), miR-720 and miR-339-5p (16-week), and miR-720, miR-22, and miR-339-5p (combined 8- and 16-week) emerged as the most influential miRNAs.
Collapse
Affiliation(s)
- Chairmandurai Aravindraja
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA; (C.A.); (S.J.); (K.M.V.)
| | - Syam Jeepipalli
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA; (C.A.); (S.J.); (K.M.V.)
| | - William D. Duncan
- Department of Community Dentistry and Behavioral Science, College of Dentistry, University of Florida, Gainesville, FL 32610, USA;
| | - Krishna Mukesh Vekariya
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA; (C.A.); (S.J.); (K.M.V.)
| | - Shaik O. Rahaman
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA;
| | - Edward K. L. Chan
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA;
| | - Lakshmyya Kesavalu
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA; (C.A.); (S.J.); (K.M.V.)
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA;
| |
Collapse
|
3
|
Xu F, Gao W, Zhang M, Zhang F, Sun X, Wu B, Liu Y, Li X, Li H. Diagnostic implications of ubiquitination-related gene signatures in Alzheimer's disease. Sci Rep 2024; 14:10728. [PMID: 38730027 PMCID: PMC11087467 DOI: 10.1038/s41598-024-61363-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024] Open
Abstract
The purpose of this study was to explore the diagnostic implications of ubiquitination-related gene signatures in Alzheimer's disease. In this study, we first collected 161 samples from the GEO database (including 87 in the AD group and 74 in the normal group). Subsequently, through differential expression analysis and the iUUCD 2.0 database, we obtained 3450 Differentially Expressed Genes (DEGs) and 806 Ubiquitin-related genes (UbRGs). After taking the intersection, we obtained 128 UbR-DEGs. Secondly, by conducting GO and KEGG enrichment analysis on these 128 UbR-DEGs, we identified the main molecular functions and biological pathways related to AD. Furthermore, through the utilization of GSEA analysis, we have gained insight into the enrichment of functions and pathways within both the AD and normal groups. Further, using lasso regression analysis and cross-validation techniques, we identified 22 characteristic genes associated with AD. Subsequently, we constructed a logistic regression model and optimized it, resulting in the identification of 6 RUbR-DEGs: KLHL21, WDR82, DTX3L, UBTD2, CISH, and ATXN3L. In addition, the ROC result showed that the diagnostic model we built has excellent accuracy and reliability in identifying AD patients. Finally, we constructed a lncRNA-miRNA-mRNA (competing endogenous RNA, ceRNA) regulatory network for AD based on six RUbR-DEGs, further elucidating the interaction between UbRGs and lncRNA, miRNA. In conclusion, our findings will contribute to further understanding of the molecular pathogenesis of AD and provide a new perspective for AD risk prediction, early diagnosis and targeted therapy in the population.
Collapse
Affiliation(s)
- Fei Xu
- Heilongjiang Provincial Administration of Traditional Chinese Medicine, Harbin, 150036, Heilongjiang, China
| | - Wei Gao
- Jiangsu College of Nursing, Huaian, 223003, Jiangsu, China
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Miao Zhang
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China.
| | - Fuyue Zhang
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - XiaoFei Sun
- Jiangsu College of Nursing, Huaian, 223003, Jiangsu, China
| | - Bao Wu
- Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujiang, China
| | - Yali Liu
- Shanghai University of Sport, Shanghai, 200438, China
| | - Xue Li
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Honglin Li
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China.
| |
Collapse
|
4
|
Liang G, Feng Y, Tang W, Yao L, Huang C, Chen Y. Proinflammatory Bone Marrow Mesenchymal Stem Cell-Derived Exosomal miR-150-3p Suppresses Proinflammatory Polarization of Alveolar Macrophages in Sepsis by Targeting Inhibin Subunit Beta A. J Interferon Cytokine Res 2023; 43:518-530. [PMID: 37819735 DOI: 10.1089/jir.2023.0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
Bone marrow mesenchymal stem cell (BMSC)-derived exosomes can protect lung tissues against sepsis, but its related mechanism remains elusive. BMSCs were primed with or without lipopolysaccharide (LPS) before extracting exosomes. The isolated exosomes were identified by transmission electron microscopy, nanoparticle tracking analysis, and western blot. LPS-stimulated macrophages were cocultured with exosomes for 24 h, followed by enzyme-linked immunosorbent assay, flow cytometry, and molecular experiments. Bioinformatics and luciferase assay were employed to investigate the interaction between miR-150-3p and inhibin subunit beta A (INHBA). MiR-150-3p expression was increased in exosomes in a proinflammatory environment. Exosomes suppressed proinflammatory polarization by downregulating IL-6, IL-1β, iNOS, and CD86, as well as promoted anti-inflammatory polarization by upregulating IL-10, ARG-1, and CD206 in LPS-stimulated macrophages. Such effects were more pronounced by LPS-primed exosomes, which was reversed in the absence of miR-150-3p. MiR-150-3p targeted INHBA. INHBA silencing decreased CD86 expression and increased CD206 expression in macrophages, but these effects were reversed by exosomal miR-150-3p inhibition. Proinflammatory BMSC-derived exosomal miR-150-3p suppressed proinflammatory polarization and promoted anti-inflammatory polarization of alveolar macrophages to attenuate LPS-induced sepsis by targeting INHBA.
Collapse
Affiliation(s)
- Guojin Liang
- Department of Anesthesiology, Ningbo First Hospital, Ningbo, China
| | - Yueying Feng
- Department of Pediatrics, Ningbo Women & Children's Hospital, Ningbo, China
| | - Wan Tang
- Department of Anesthesiology, Ningbo First Hospital, Ningbo, China
| | - Lifeng Yao
- Department of Anesthesiology, Ningbo First Hospital, Ningbo, China
| | - Changshun Huang
- Department of Anesthesiology, Ningbo First Hospital, Ningbo, China
| | - Yijun Chen
- Department of Anesthesiology, Ningbo First Hospital, Ningbo, China
| |
Collapse
|
5
|
Yan Z, Zong Y, Zhang C, Han Z, Wu L, Qin L, Liu T. Exploring the role of Tibetan medicinal formula Qishiwei Zhenzhu Pills (Ranasampel) against diabetes mellitus-linked cognitive impairment of db/db mice through serum pharmacochemistry and microarray data analysis. Front Aging Neurosci 2022; 14:1033128. [PMID: 36620773 PMCID: PMC9814129 DOI: 10.3389/fnagi.2022.1033128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Background Diabetes cognitive impairment (DCI) is a common diabetic central nervous system disorder that severely affects the quality of life of patients. Qishiwei Zhenzhu Pills (Ranasampel) is a valuable Tibetan medicine formula with the ability to improve cerebral blood vessels, protect nerves and improve learning and memory, which has also been widely verified in clinical and basic research. Currently, the prevention and treatment of DCI are still in the exploratory research stage, and the use of Ranasampel will provide new ideas and insights for its treatment. Objective This study is to explore the absorbed components in serum derived from Ranasampel using serum pharmacochemistry, then identify the potential mechanism of Ranasampel for the treatment of DCI through bioinformatics and microarray data validation. Methods The UPLC-Q-Exactive MS/MS-based serum pharmacochemistry method was conducted to identify the main active components in serum containing Ranasampel. Then, these components were used to predict the possible biological targets of Ranasampel and explore the potential targets in treating DCI by overlapping with differentially expressed genes (DEGs) screened from Gene Expression Omnibus datasets. Afterward, the protein-protein interaction network, enrichment analyses, hub gene identification, and co-expression analysis were used to study the potential mechanism of Ranasampel. Particularly, the hub genes and co-expression transcription factors were further validated using hippocampal expression profiles of db/db mice treated with Ranasampel, while the Morris water-maze test and H&E staining were used to assess the spatial learning and memory behaviors and histopathological changes. Results Totally, 40 compounds derived from Ranasampel had been identified by serum sample analysis, and 477 genes related to these identified compounds in Ranasampel, 110 overlapping genes were collected by the intersection of Ranasampel target genes and DEGs. Further comprehensive analysis and verification emphasized that the mechanism of Ranasampel treatment of DCI may be related to the improvement of learning and memory function as well as insulin resistance, hyperglycemia-induced neuronal damage, and neuroinflammation. Conclusion This study provided useful strategies to explore the potential material basis for compound prescriptions such as Ranasampel. These hub genes and common pathways also provided new ideas for further study of therapeutic targets of DCI and the pharmacological mechanism of Ranasampel.
Collapse
Affiliation(s)
- Zhiyi Yan
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China,Key Laboratory of Health-Cultivation, Ministry of Education of the People’s Republic of China, Beijing University of Chinese Medicine, Beijing, China
| | - Yonghua Zong
- Key Laboratory of Health-Cultivation, Ministry of Education of the People’s Republic of China, Beijing University of Chinese Medicine, Beijing, China,Department of Tibetan Medicine, University of Tibetan Medicine, Lhasa, China
| | - Chengfei Zhang
- Key Laboratory of Health-Cultivation, Ministry of Education of the People’s Republic of China, Beijing University of Chinese Medicine, Beijing, China
| | - Zekun Han
- Key Laboratory of Health-Cultivation, Ministry of Education of the People’s Republic of China, Beijing University of Chinese Medicine, Beijing, China
| | - Lili Wu
- Key Laboratory of Health-Cultivation, Ministry of Education of the People’s Republic of China, Beijing University of Chinese Medicine, Beijing, China
| | - Lingling Qin
- Key Laboratory of Health-Cultivation, Ministry of Education of the People’s Republic of China, Beijing University of Chinese Medicine, Beijing, China
| | - Tonghua Liu
- Key Laboratory of Health-Cultivation, Ministry of Education of the People’s Republic of China, Beijing University of Chinese Medicine, Beijing, China,*Correspondence: Tonghua Liu,
| |
Collapse
|
6
|
Danggui Buxue Decoction Ameliorates Idiopathic Pulmonary Fibrosis through MicroRNA and Messenger RNA Regulatory Network. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3439656. [PMID: 35518349 PMCID: PMC9064538 DOI: 10.1155/2022/3439656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/25/2022] [Accepted: 04/05/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To develop a putative microRNA (miRNA) and messenger RNA (mRNA) regulatory network of Danggui Buxue decoction's (DGBXD) amelioration of idiopathic pulmonary fibrosis (IPF). METHODS The Gene Expression Omnibus (GEO) database was used to identify differentially expressed miRNAs (DE-miRNAs) and differentially expressed mRNAs (DE-mRNAs). Using miRNet, the predicted target genes of identified DE-miRNAs were estimated, and then the target genes of DE-miRNAs in IPF were comprehensively examined. The Enrichr database was used to conduct functional enrichment and pathway enrichment. Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) was employed to obtain the target genes of DGBXD as well as active compounds. A putative miRNA-mRNA regulatory network of DGBXD acting on IPF was developed by intersecting the target genes of DGBXD with the DE-miRNA target genes in IPF. A bleomycin-induced mouse model was established and used to perform histopathology as well as real-time quantitative polymerase chain reaction (qRT-PCR) analyses of some miRNA-mRNA pairs. RESULTS Fourteen upmodulated DE-miRNAs and six downmodulated DE-miRNAs were screened. The downstream target genes of upmodulated and downmodulated DE-miRNAs were predicted. Subsequently, 1160 upmodulated DE-mRNAs and 1427 downmodulated DE-mRNAs were identified. Then, target genes of DE-miRNAs comprising 49 downmodulated and 53 upmodulated target genes were further screened to perform functional enrichment and pathway enrichment analyses. Subsequently, 196 target genes of DGBXD were obtained from TCMSP, with six downregulated target genes and six upregulated target genes of DGBXD acting on IPF being identified. A promising miRNA-mRNA regulatory network of DGBXD acting on IPF was developed in this study. Moreover, mir-493 together with its target gene Olr1 and mir-338 together with Hif1a were further validated by qRT-PCR. CONCLUSION This study proposed detailed possible processes of miRNA-mRNA modulatory axis in IPF and constructed a prospective IPF-related miRNA-mRNA modulatory network with the aim of alleviating IPF with DGBXD.
Collapse
|