1
|
Kumar M, Kumar A, Tripathi V, Prabhat A, Bhardwaj SK. Dimly illuminated nights alter behavior and negatively affect fat metabolism in adult male zebra finches. Photochem Photobiol Sci 2024; 23:2201-2210. [PMID: 39546189 DOI: 10.1007/s43630-024-00659-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024]
Abstract
This experiment investigated the effects of an ecologically relevant level of dim light at night (dLAN) on behavior, physiology and fat metabolism associated gene expressions in central and peripheral tissues of adult male zebra finches that were hatched and raised in 12:12 h LD cycle (Ev, day = 150 ± 5 lx; Ev, night = 0 lx) at 22 ± 2 °C temperature. Half of the birds (n = 8) were maintained on LD cycle and temperature, as before (control), to the other half of birds the 12 h dark period was dimly illuminated at ~ 5 lx (dim light at night, dLAN; Ev, day = 150 ± 5 lx; Ev, night = ~ 5 lx) for 6 weeks. The exposure to dLAN altered the 24 h activity and feeding patterns with enhanced activity and feeding at night. Birds under dLAN fattened and gained weight, and had higher night glucose levels. Concurrently, a negative effect of dLAN was found on mRNA expression of ppar-alpha and cd36 genes involved in the fat metabolism in the hypothalamus, intestine, liver and muscle. These results suggest a more global effect of dLAN exposure on obesity and perhaps long-term health risks due to obesity-related complications to diurnal animals including humans inhabiting an urbanized environment.
Collapse
Affiliation(s)
- Mayank Kumar
- Department of Zoology, Chaudhary Charan Singh University, Meerut, 250004, India
| | - Ashwani Kumar
- Department of Zoology, Chaudhary Charan Singh University, Meerut, 250004, India
| | - Vatsala Tripathi
- Department of Zoology, Chaudhary Charan Singh University, Meerut, 250004, India
- Department of Zoology, Dyal Singh College, University of Delhi, Delhi, 110003, India
| | - Abhilash Prabhat
- Department of Zoology, Chaudhary Charan Singh University, Meerut, 250004, India
- Department of Physiology, University of Kentucky, Lexington, KY, 40506, USA
| | | |
Collapse
|
2
|
Beaugeard E, Brischoux F, Angelier F. Light pollution affects activity differentially across breeding stages in an urban exploiter: An experiment in the house sparrow (Passer domesticus). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124055. [PMID: 38692388 DOI: 10.1016/j.envpol.2024.124055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/05/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Artificial Light At Night (ALAN) is a major urban perturbation, which can have detrimental effects on wildlife. Recent urban planning has led to an increased use of white light emission diodes (LEDs) in cities. However, little is known about the effects of this type of ALAN on wild vertebrates, especially during reproduction. We designed an experiment to test the impact of ALAN on the activity rhythms (daily time of first activity (TFA) and time of last activity (TLA)) of captive House sparrows (Passer domesticus) during several reproductive stages (from pre-breeding to post-breeding). We also tested the impact of ALAN on reproductive performance (laying date, clutch size, hatching and fledging success). Experimental birds were active earlier in the morning (earlier TFA) relative to controls although experimental and control birds did not differ in their TLA. The effect of ALAN on TFA was apparent during specific stages only (pre-breeding and chick-rearing stages), suggesting that sparrows actively adjust their activity in response to ALAN only during specific periods. This impact of ALAN on activity did not persist through the whole breeding season, suggesting that sparrows may habituate to ALAN. Alternatively, they may not be able to sustain a long-term increased activity in response to ALAN because of sleep deprivation and related physiological costs. Finally, we did not find any impact of ALAN on the reproductive performance of captive house sparrows held under optimal conditions. This suggests that ALAN may not be dramatically detrimental to the reproduction of this urban exploiter, at least when food availability is not constraining.
Collapse
Affiliation(s)
- Erika Beaugeard
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS-LRU, 79360, Villiers en Bois, France
| | - François Brischoux
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS-LRU, 79360, Villiers en Bois, France
| | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS-LRU, 79360, Villiers en Bois, France.
| |
Collapse
|
3
|
Strauß AFT, Bosma L, Visser ME, Helm B. Short-time exposure to light at night affects incubation patterns and correlates with subsequent body weight in great tits (Parus major). JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:364-376. [PMID: 38327263 DOI: 10.1002/jez.2787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 02/09/2024]
Abstract
Artificial light at night (ALAN) widely affects wildlife by blurring light-dark differences, including transitions such as sunrise and sunset, thereby affecting regulation of diel rhythms. As a result, activity onsets in many wild diurnal songbirds advance under ALAN. From chronobiological studies, it is known that the direction and strength of the response to light depends on when during the night exposure takes place. However, these experiments are mostly done under continuous light conditions, when animals have free-running rhythms. It remains unclear whether phase-dependence also holds in entrained, wild songbirds; i.e., does the effect of ALAN on activity patterns differ between exposure in the morning compared to the evening? This information is essential to assess the effects of mitigation measures by limiting ALAN to selected times of the night. We exposed incubating great tits (Parus major) inside the nest-box to 4 h of dim light, of which 1 h overlapped with dawn before sunrise or dusk after sunset. We found a small advancing effect of morning-light on activity onset and of evening-light on offset compared to dark controls but not vice versa. Breeding success and chick condition were unaffected by the light treatments. However, light-treated females had lower weights 9-18 days after the end of the treatment compared to the controls, independent of whether ALAN occurred in the morning or the evening, indicating possible costs of ALAN. Despite the weak behavioral response, ALAN might have affected the females' circadian clock or physiology resulting in lower body condition.
Collapse
Affiliation(s)
- Aurelia F T Strauß
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Lies Bosma
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Marcel E Visser
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Barbara Helm
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
- Bird Migration Unit, Swiss Ornithological Institute, Sempach, Switzerland
| |
Collapse
|
4
|
Helm B, Greives T, Zeman M. Endocrine-circadian interactions in birds: implications when nights are no longer dark. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220514. [PMID: 38310930 PMCID: PMC10838642 DOI: 10.1098/rstb.2022.0514] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/18/2023] [Indexed: 02/06/2024] Open
Abstract
Biological clocks are evolved time-keeping systems by which organisms rhythmically coordinate physiology within the body, and align it with rhythms in their environment. Clocks are highly sensitive to light and are at the interface of several major endocrine pathways. Worryingly, exposure to artificial-light-at-night (ALAN) is rapidly increasing in ever more extensive parts of the world, with likely impact on wild organisms mediated by endocrine-circadian pathways. In this overview, we first give a broad-brush introduction to biological rhythms. Then, we outline interactions between the avian clock, endocrine pathways, and environmental and internal modifiers. The main focus of this review is on the circadian hormone, melatonin. We summarize information from avian field and laboratory studies on melatonin and its relationships with behaviour and physiology, including often neglected developmental aspects. When exposed to ALAN, birds are highly vulnerable to disruption of behavioural rhythms and of physiological systems under rhythmic control. Several studies suggest that melatonin is likely a key mediator for a broad range of effects. We encourage further observational and experimental studies of ALAN impact on melatonin, across the full functional range of this versatile signalling molecule, as well as on other candidate compounds at the endocrine-circadian interface. This article is part of the theme issue 'Endocrine responses to environmental variation: conceptual approaches and recent developments'.
Collapse
Affiliation(s)
- Barbara Helm
- Swiss Ornithological Institute, Bird Migration Unit, Seerose 1, 6204 Sempach, Switzerland
| | - Timothy Greives
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Michal Zeman
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Bratislava SK 84215, Slovakia
| |
Collapse
|
5
|
Molcan L, Babarikova K, Cvikova D, Kincelova N, Kubincova L, Mauer Sutovska H. Artificial light at night suppresses the day-night cardiovascular variability: evidence from humans and rats. Pflugers Arch 2024; 476:295-306. [PMID: 38177874 PMCID: PMC10847188 DOI: 10.1007/s00424-023-02901-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/06/2024]
Abstract
Artificial light at night (ALAN) affects most of the population. Through the retinohypothalamic tract, ALAN modulates the activity of the central circadian oscillator and, consequently, various physiological systems, including the cardiovascular one. We summarised the current knowledge about the effects of ALAN on the cardiovascular system in diurnal and nocturnal animals. Based on published data, ALAN reduces the day-night variability of the blood pressure and heart rate in diurnal and nocturnal animals by increasing the nocturnal values of cardiovascular variables in diurnal animals and decreasing them in nocturnal animals. The effects of ALAN on the cardiovascular system are mainly transmitted through the autonomic nervous system. ALAN is also considered a stress-inducing factor, as glucocorticoid and glucose level changes indicate. Moreover, in nocturnal rats, ALAN increases the pressure response to load. In addition, ALAN induces molecular changes in the heart and blood vessels. Changes in the cardiovascular system significantly depend on the duration of ALAN exposure. To some extent, alterations in physical activity can explain the changes observed in the cardiovascular system after ALAN exposure. Although ALAN acts differently on nocturnal and diurnal animals, we can conclude that both exhibit a weakened circadian coordination among physiological systems, which increases the risk of future cardiovascular complications and reduces the ability to anticipate stress.
Collapse
Affiliation(s)
- Lubos Molcan
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, Bratislava, Slovakia
| | - Katarina Babarikova
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, Bratislava, Slovakia
| | - Diana Cvikova
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, Bratislava, Slovakia
| | - Natalia Kincelova
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, Bratislava, Slovakia
| | - Lenka Kubincova
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, Bratislava, Slovakia
| | - Hana Mauer Sutovska
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, Bratislava, Slovakia.
| |
Collapse
|
6
|
Alberti M. Cities of the Anthropocene: urban sustainability in an eco-evolutionary perspective. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220264. [PMID: 37952615 PMCID: PMC10645089 DOI: 10.1098/rstb.2022.0264] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/18/2023] [Indexed: 11/14/2023] Open
Abstract
Cities across the globe are driving systemic change in social and ecological systems by accelerating the rates of interactions and intensifying the links between human activities and Earth's ecosystems, thereby expanding the scale and influence of human activities on fundamental processes that sustain life. Increasing evidence shows that cities not only alter biodiversity, they change the genetic makeup of many populations, including animals, plants, fungi and microorganisms. Urban-driven rapid evolution in species traits might have significant effects on socially relevant ecosystem functions such as nutrient cycling, pollination, water and air purification and food production. Despite increasing evidence that cities are causing rapid evolutionary change, current urban sustainability strategies often overlook these dynamics. The dominant perspectives that guide these strategies are essentially static, focusing on preserving biodiversity in its present state or restoring it to pre-urban conditions. This paper provides a systemic overview of the socio-eco-evolutionary transition associated with global urbanization. Using examples of observed changes in species traits that play a significant role in maintaining ecosystem function and resilience, I propose that these evolutionary changes significantly impact urban sustainability. Incorporating an eco-evolutionary perspective into urban sustainability science and planning is crucial for effectively reimagining the cities of the Anthropocene. This article is part of the theme issue 'Evolution and sustainability: gathering the strands for an Anthropocene synthesis'.
Collapse
Affiliation(s)
- Marina Alberti
- Department of Urban Design and Planning, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
7
|
Thoré ESJ, Aulsebrook AE, Brand JA, Almeida RA, Brodin T, Bertram MG. Time is of the essence: The importance of considering biological rhythms in an increasingly polluted world. PLoS Biol 2024; 22:e3002478. [PMID: 38289905 PMCID: PMC10826942 DOI: 10.1371/journal.pbio.3002478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Biological rhythms have a crucial role in shaping the biology and ecology of organisms. Light pollution is known to disrupt these rhythms, and evidence is emerging that chemical pollutants can cause similar disruption. Conversely, biological rhythms can influence the effects and toxicity of chemicals. Thus, by drawing insights from the extensive study of biological rhythms in biomedical and light pollution research, we can greatly improve our understanding of chemical pollution. This Essay advocates for the integration of biological rhythmicity into chemical pollution research to gain a more comprehensive understanding of how chemical pollutants affect wildlife and ecosystems. Despite historical barriers, recent experimental and technological advancements now facilitate the integration of biological rhythms into ecotoxicology, offering unprecedented, high-resolution data across spatiotemporal scales. Recognizing the importance of biological rhythms will be essential for understanding, predicting, and mitigating the complex ecological repercussions of chemical pollution.
Collapse
Affiliation(s)
- Eli S. J. Thoré
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
- TRANSfarm—Science, Engineering, & Technology Group, KU Leuven, Lovenjoel, Belgium
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Anne E. Aulsebrook
- Department of Ornithology, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | - Jack A. Brand
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
- Institute of Zoology, Zoological Society of London, London, United Kingdom
| | - Rafaela A. Almeida
- Laboratory of Aquatic Ecology, Evolution, and Conservation, Department of Biology, KU Leuven, Leuven, Belgium
| | - Tomas Brodin
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Michael G. Bertram
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
- Department of Zoology, Stockholm University, Stockholm, Sweden
- School of Biological Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
8
|
McGlade CLO, Capilla-Lasheras P, Womack RJ, Helm B, Dominoni DM. Experimental light at night explains differences in activity onset between urban and forest great tits. Biol Lett 2023; 19:20230194. [PMID: 37670610 PMCID: PMC10480697 DOI: 10.1098/rsbl.2023.0194] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/10/2023] [Indexed: 09/07/2023] Open
Abstract
Artificial light at night (ALAN) is rapidly increasing and so is scientific interest in its ecological and evolutionary consequences. In wild species, ALAN can modify and disrupt biological rhythms. However, experimental proof of such effects of ALAN in the wild is still scarce. Here, we compared diel rhythms of incubation behaviour, inferred from temperature sensors, of female great tits (Parus major) breeding in urban and forest sites. In parallel, we simulated ALAN by mounting LED lights (1.8 lx) inside forest nest-boxes, to determine the potentially causal role of ALAN affecting diel patterns of incubation. Urban females had an earlier onset of activity compared to forest females. Experimentally ALAN-exposed forest females were similar to urban females in their advanced onset of activity, compared to unexposed forest birds. However, forest females exposed to experimental ALAN, but not urban females, were more restless at night than forest control females. Our findings demonstrate that ALAN can explain the early activity timing in incubating urban great tits, but its effects on sleep disturbance in the forest are not reflected in urban females. Consequently, future research needs to address potential effects of ALAN-induced timing on individual health, fitness and population dynamics, in particular in populations that were not previously affected by light pollution.
Collapse
Affiliation(s)
| | - Pablo Capilla-Lasheras
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK
| | - Robyn J. Womack
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK
| | - Barbara Helm
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK
- Swiss Ornithological Institute, 6204 Sempach, Switzerland
| | - Davide M. Dominoni
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK
| |
Collapse
|
9
|
Jägerbrand AK, Spoelstra K. Effects of anthropogenic light on species and ecosystems. Science 2023; 380:1125-1130. [PMID: 37319223 DOI: 10.1126/science.adg3173] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/05/2023] [Indexed: 06/17/2023]
Abstract
Anthropogenic light is ubiquitous in areas where humans are present and is showing a progressive increase worldwide. This has far-reaching consequences for most species and their ecosystems. The effects of anthropogenic light on natural ecosystems are highly variable and complex. Many species suffer from adverse effects and often respond in a highly specific manner. Ostensibly surveyable effects such as attraction and deterrence become complicated because these can depend on the type of behavior and specific locations. Here, we considered how solutions and new technologies could reduce the adverse effects of anthropogenic light. A simple solution to reducing and mitigating the ecological effects of anthropogenic light seems unattainable, because frugal lighting practices and turning off lights may be necessary to eliminate them.
Collapse
Affiliation(s)
- Annika K Jägerbrand
- Department of Electrical Engineering, Mathematics and Science, Faculty of Engineering and Sustainable Development, University of Gävle, 801 76 Gävle, Sweden
| | - Kamiel Spoelstra
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6700 AB Wageningen, Netherlands
| |
Collapse
|
10
|
Tomotani BM, Timpen F, Spoelstra K. Ingrained city rhythms: flexible activity timing but more persistent circadian pace in urban birds. Proc Biol Sci 2023; 290:20222605. [PMID: 37192668 PMCID: PMC10188242 DOI: 10.1098/rspb.2022.2605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/24/2023] [Indexed: 05/18/2023] Open
Abstract
Urbanization dramatically increases the amount of light at night, which may disrupt avian circadian organization. We measured activity patterns of great tits breeding in the city and forest, and subsequently measured two clock properties of these birds under controlled conditions: tau (endogenous circadian clock speed) and after-effects (history dependency of the clock relative to previous conditions). City and forest birds showed a high repeatability of activity onset (0.60 and 0.41, respectively), with no difference between habitats after controlling for date effects. Activity duration and offset showed more variance, without a difference between birds from the two habitats. Tau did not differ between city and forest birds, however, city birds showed stronger after-effects, taking more days to revert to their endogenous circadian period. Finally, onset of activity was correlated with clocks speed in both habitats. Our results suggest that potential differences in activity timing of city birds is not caused by different clock speeds, but by a direct response to light. Persistence in after-effects suggests a reduced sensitivity of the clock to light at night. Urbanization may select for clock properties that increase the inertia of the endogenous circadian system to improve accuracy of activity rhythms when exposed to noisier lighting cues.
Collapse
Affiliation(s)
- Barbara M. Tomotani
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Fabian Timpen
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Kamiel Spoelstra
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| |
Collapse
|
11
|
Levy K, Barnea A, Ayali A. Exposure to a nocturnal light pulse simultaneously and differentially affects stridulation and locomotion behaviors in crickets. Front Physiol 2023; 14:1151570. [PMID: 37008009 PMCID: PMC10061070 DOI: 10.3389/fphys.2023.1151570] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
It is crucial for living organisms to be in synchrony with their environment and to anticipate circadian and annual changes. The circadian clock is responsible for entraining organisms' activity to the day-night rhythmicity. Artificial light at night (ALAN) was shown to obstruct the natural light cycle, leading to desynchronized behavioral patterns. Our knowledge of the mechanisms behind these adverse effects of ALAN, however, is far from complete. Here we monitored the stridulation and locomotion behavior of male field crickets (Gryllus bimaculatus), raised under light:dark conditions, before, during, and after exposure to a nocturnal 3-h pulse of different ALAN intensities. The experimental insects were then placed under a constant light regime (of different intensities); their behavior was continuously monitored; and the period of their daily activity rhythms was calculated. The light pulse treatment induced a simultaneous negative (suppressing stridulation) and positive (inducing locomotion) effect, manifested in significant changes in the average level of the specific activity on the night of the pulse compared to the preceding and the following nights. The transition to constant light conditions led to significant changes in the period of the circadian rhythms. Both effects were light-intensity-dependent, indicating the importance of dark nights for both individual and population synchronization.
Collapse
Affiliation(s)
- Keren Levy
- School of Zoology, Tel Aviv University, Tel-Aviv, Israel
| | - Anat Barnea
- Department of Natural and Life Sciences, The Open University of Israel, Ra’anana, Israel
| | - Amir Ayali
- School of Zoology, Tel Aviv University, Tel-Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel-Aviv, Israel
| |
Collapse
|
12
|
Yan Z, Tan M. Changes in light pollution in the Pan-Third Pole's protected areas from 1992 to 2021. ECOL INFORM 2023. [DOI: 10.1016/j.ecoinf.2023.102016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
13
|
Levy K, Fishman B, Barnea A, Ayali A, Tauber E. Transcriptional Response of Circadian Clock Genes to an ‘Artificial Light at Night’ Pulse in the Cricket Gryllus bimaculatus. Int J Mol Sci 2022; 23:ijms231911358. [PMID: 36232659 PMCID: PMC9570371 DOI: 10.3390/ijms231911358] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Light is the major signal entraining the circadian clock that regulates physiological and behavioral rhythms in most organisms, including insects. Artificial light at night (ALAN) disrupts the natural light–dark cycle and negatively impacts animals at various levels. We simulated ALAN using dim light stimuli and tested their impact on gene expression in the cricket Gryllus bimaculatus, a model of insect physiology and chronobiology. At night, adult light–dark-regime-raised crickets were exposed for 30 min to a light pulse of 2–40 lx. The relative expression of five circadian-clock-associated genes was compared using qPCR. A dim ALAN pulse elicited tissue-dependent differential expression in some of these genes. The strongest effect was observed in the brain and in the optic lobe, the cricket’s circadian pacemaker. The expression of opsin-Long Wave (opLW) was upregulated, as well as cryptochrome1-2 (cry) and period (per). Our findings demonstrate that even a dim ALAN exposure may affect insects at the molecular level, underscoring the impact of ALAN on the circadian clock system.
Collapse
Affiliation(s)
- Keren Levy
- School of Zoology, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Bettina Fishman
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Haifa 3498838, Israel
| | - Anat Barnea
- Department of Natural and Life Sciences, The Open University of Israel, Raanana 4353701, Israel
| | - Amir Ayali
- School of Zoology, Tel Aviv University, Tel-Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel-Aviv 6997801, Israel
- Correspondence: (A.A.); (E.T.)
| | - Eran Tauber
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Haifa 3498838, Israel
- Correspondence: (A.A.); (E.T.)
| |
Collapse
|