1
|
Karimi MR, Abdollahi S, Etemadi A, Hakimiha N. Investigating the Effect of Photobiomodulation Therapy With Different Wavelengths of Diode Lasers on the Proliferation and Adhesion of Human Gingival Fibroblast Cells to a Collagen Membrane: An In Vitro Study. J Lasers Med Sci 2024; 15:e53. [PMID: 39650779 PMCID: PMC11625390 DOI: 10.34172/jlms.2024.53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/15/2024] [Indexed: 12/11/2024]
Abstract
Introduction: Photobiomodulation (PBM) is considered a promising adjunctive approach in regenerative medicine. This study aimed to investigate the proliferation and adhesion of human gingival fibroblast (HGF) cells to a collagen membrane following PBM. Methods: Cultured HGF cells on a collagen membrane received PBM at wavelengths of 808 nm, 915 nm (2 and 4 J/cm2), and 660 nm (2.1 and 4.2 J/cm2) in interventional groups, while non-irradiated cells served as the control. On days 1 and 3 post-irradiation, cell proliferation was measured by MTT assay, and adhesion to the membrane was assessed under the scanning electron microscope (SEM). Results: Cell proliferation significantly increased in interventional groups compared to the control, with the most significant increase at 915 nm (4 J/cm2) in both time points. On the first day, the 808 nm and 660 nm lasers demonstrated similar results, significantly lower than the 915 nm laser (2 J/cm2). On day 3, the 660 nm, 808 nm, and 915 nm (2 J/cm2) groups showed comparable results. Qualitative analysis by the SEM identified spindle-shaped cells with multiple extended projections in 915 nm groups, especially at an energy density of 4 J/cm2. Groups of 660 nm and 808 nm (4 J/cm2) showed spindle-shaped cell morphology. No distinct cellular morphology indicative of enhanced adhesion was observed at 808 nm (2 J/cm2). Conclusion: The most effective PBM setup for promoting HGF proliferation and adhesion to a collagen membrane was identified at 915 nm (4 J/cm2).
Collapse
Affiliation(s)
- Mohammad Reza Karimi
- Department of Periodontics, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shahrzad Abdollahi
- Department of Periodontics, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ardavan Etemadi
- Department of Periodontics, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Neda Hakimiha
- Laser Application in Medical Sciences Research Center, Shahid Beheshti university of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Liu J, Wang H, Luo J, Chen T, Xi Q, Sun J, Wei L, Zhang Y. Synergism of fermented feed and ginseng polysaccharide on growth performance, intestinal development, and immunity of Xuefeng black-bone chickens. BMC Vet Res 2024; 20:13. [PMID: 38184589 PMCID: PMC10770880 DOI: 10.1186/s12917-023-03859-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/18/2023] [Indexed: 01/08/2024] Open
Abstract
Microbial fermented feed (MF) is considered a valuable strategy to bring advantages to livestock and is widely practiced. Oral supplementation of Ginseng polysaccharide (Gps) eliminated weight loss in chickens following vaccination. This study investigated the effects of the combined use of Gps and MF on growth performance and immune indices in Xuefeng black-bone chickens. A total of 400 Xuefeng black-bone chickens at the age of 1 day were randomly assigned to four groups. Normal feed group (Control group), ginseng polysaccharide (200 mg/kg) group (Gps group), microbially fermented feed (completely replace the normal feed) group (MF group), and microbially fermented feed and add ginseng polysaccharide just before use (MF + Gps group). Each group contained 5 pens per treatment and 20 birds per pen. The body weight and average daily gain in the Gps, MF, and MF + Gps groups increased significantly (P < 0.01), while the feed conversion ratio decreased significantly (P < 0.01). The combined use of MF and Gps showed a synergistic effect. There was no significant difference in villus height (cecal) between the experimental group and the Con group. The crypt depth of the three experimental groups exhibited a significantly lower value compared to the Control group (P < 0.05). The V/C ratio of the Gps group and MF + Gps was significantly increased (P < 0.05), but there was no significant difference in the MF group. Moreover, the diarrhea rate of the Gps and the MF + Gps groups was lower than that of the Con group, while that of the MF + Gps group decreased the mortality rate (P < 0.05). The serum tumor necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6) levels in the MF, Gps, and MF + Gps groups decreased significantly (P < 0.01), the serum immunoglobulin G (IgG) levels increased significantly (P < 0.01), while the combination of MF and Gps had a synergistic effect. The combined use of Gps and MF not only further improved growth performance and immune parameters, but also reduced the diarrhea rate and mortality.
Collapse
Affiliation(s)
- Jie Liu
- Sanya Institute, Hainan Academy of Agricultural Sciences (Hainan Experimental Animal Research Center), Sanya, 572000, Hainan, China
- Institute of Animal Husbandry and Veterinary Medicine, Hainan Key Laboratory for Tropical Animal Breeding and Disease Research, Hainan Academy of Agricultural Sciences, Haikou, 571100, Hainan, China
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Huan Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Junyi Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Ting Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jiajie Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Limin Wei
- Sanya Institute, Hainan Academy of Agricultural Sciences (Hainan Experimental Animal Research Center), Sanya, 572000, Hainan, China.
- Institute of Animal Husbandry and Veterinary Medicine, Hainan Key Laboratory for Tropical Animal Breeding and Disease Research, Hainan Academy of Agricultural Sciences, Haikou, 571100, Hainan, China.
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
3
|
Li R, Kato H, Fumimoto C, Nakamura Y, Yoshimura K, Minagawa E, Omatsu K, Ogata C, Taguchi Y, Umeda M. Essential Amino Acid Starvation-Induced Oxidative Stress Causes DNA Damage and Apoptosis in Murine Osteoblast-like Cells. Int J Mol Sci 2023; 24:15314. [PMID: 37894999 PMCID: PMC10607495 DOI: 10.3390/ijms242015314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/04/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Intracellular nutrient metabolism, particularly the metabolism of essential amino acids (EAAs), is crucial for cellular functions, including energy production and redox homeostasis. An EAA deficiency can lead to cellular dysfunction and oxidative stress. This study explores the mechanisms underlying cellular responses to EAA starvation, focusing on ROS-induced DNA damage and apoptosis. MC3T3-E1 cells were subjected to EAA starvation, and various assays were conducted to assess cell proliferation, survival, DNA damage, and apoptosis. The antioxidant N-acetylcysteine (NAC) was employed to block ROS formation and mitigate cellular damage. Gene expression and Western blot analyses were performed to elucidate molecular pathways. EAA starvation-induced ROS generation, DNA damage, and apoptosis in MC3T3-E1 cells. NAC administration effectively reduced DNA damage and apoptosis, highlighting the pivotal role of ROS in mediating these cellular responses during EAA deficiency. This study demonstrates that EAA starvation triggers ROS-mediated DNA damage and apoptosis, offering insights into the intricate interplay between nutrient deficiency, oxidative stress, and programmed cell death. NAC emerges as a potential therapeutic intervention to counteract these adverse effects.
Collapse
Affiliation(s)
- Runbo Li
- Department of Periodontology, Osaka Dental University, Hirakata, Osaka 573-1121, Japan
| | - Hirohito Kato
- Department of Periodontology, Osaka Dental University, Hirakata, Osaka 573-1121, Japan
| | - Chihiro Fumimoto
- Department of Periodontology, Osaka Dental University, Hirakata, Osaka 573-1121, Japan
| | - Yurika Nakamura
- Department of Periodontology, Osaka Dental University, Hirakata, Osaka 573-1121, Japan
| | - Kimihiro Yoshimura
- Department of Periodontology, Osaka Dental University, Hirakata, Osaka 573-1121, Japan
| | - Emika Minagawa
- Department of Periodontology, Osaka Dental University, Hirakata, Osaka 573-1121, Japan
| | - Keiju Omatsu
- Department of Periodontology, Osaka Dental University, Hirakata, Osaka 573-1121, Japan
| | - Chizuko Ogata
- Department of Periodontology, Osaka Dental University, Hirakata, Osaka 573-1121, Japan
| | - Yoichiro Taguchi
- Department of Periodontology, Osaka Dental University, Hirakata, Osaka 573-1121, Japan
| | - Makoto Umeda
- Department of Periodontology, Osaka Dental University, Hirakata, Osaka 573-1121, Japan
| |
Collapse
|
4
|
Minagawa E, Yamauchi N, Taguchi Y, Umeda M. Photodynamic reactions using high-intensity red LED promotes gingival wound healing by ROS induction. Sci Rep 2023; 13:17081. [PMID: 37816801 PMCID: PMC10564724 DOI: 10.1038/s41598-023-43966-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/30/2023] [Indexed: 10/12/2023] Open
Abstract
Photodynamic therapy is a treatment that combines a light source with a photosensitizer. LEDs have attracted considerable attention in clinical dentistry because they are inexpensive and safe to use. Although the interaction between photosensitizers and LEDs in dental practice is effective for treating periodontal disease by killing periodontopathic bacteria, little is known about the effects of LEDs on human gingival fibroblasts (HGnFs), which play an important role in gingival wound healing. In this study, we investigated the effects of high-intensity red LED irradiation on HGnFs after the addition of methylene blue (MB), one of the least harmful photosensitizers, on wound healing and reactive oxygen species (ROS) production induced by photodynamic reactions. We found that irradiation of MB with high-intensity red LED at controlled energy levels promoted cell proliferation, migration, and production of wound healing factors. Furthermore, ROS production by a photodynamic reaction enabled the translocation of phosphorylated Grb2-associated binder-1, activating Extracellular signal-regulated kinase 1/2 and c-Jun N-terminal kinase signals. Our findings suggest that proper control of ROS production has a beneficial effect on gingival fibroblasts, which constitute periodontal tissue, from the perspective of gingival wound healing.
Collapse
Affiliation(s)
- Emika Minagawa
- Department of Periodontology, Osaka Dental University, 8-1 Kuzuhahanazono-cho, Hirakata, Osaka, Japan
| | - Nobuhiro Yamauchi
- Department of Periodontology, Osaka Dental University, 8-1 Kuzuhahanazono-cho, Hirakata, Osaka, Japan
| | - Yoichiro Taguchi
- Department of Periodontology, Osaka Dental University, 8-1 Kuzuhahanazono-cho, Hirakata, Osaka, Japan.
| | - Makoto Umeda
- Department of Periodontology, Osaka Dental University, 8-1 Kuzuhahanazono-cho, Hirakata, Osaka, Japan
| |
Collapse
|
5
|
Lewis ST, Greenway F, Tucker TR, Alexander M, Jackson LK, Hepford SA, Loveridge B, Lakey JRT. A Receptor Story: Insulin Resistance Pathophysiology and Physiologic Insulin Resensitization's Role as a Treatment Modality. Int J Mol Sci 2023; 24:10927. [PMID: 37446104 DOI: 10.3390/ijms241310927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Physiologic insulin secretion consists of an oscillating pattern of secretion followed by distinct trough periods that stimulate ligand and receptor activation. Apart from the large postprandial bolus release of insulin, β cells also secrete small amounts of insulin every 4-8 min independent of a meal. Insulin resistance is associated with a disruption in the normal cyclical pattern of insulin secretion. In the case of type-2 diabetes, β-cell mass is reduced due to apoptosis and β cells secrete insulin asynchronously. When ligand/receptors are constantly exposed to insulin, a negative feedback loop down regulates insulin receptor availability to insulin, creating a relative hyperinsulinemia. The relative excess of insulin leads to insulin resistance (IR) due to decreased receptor availability. Over time, progressive insulin resistance compromises carbohydrate metabolism, and may progress to type-2 diabetes (T2D). In this review, we discuss insulin resistance pathophysiology and the use of dynamic exogenous insulin administration in a manner consistent with more normal insulin secretion periodicity to reverse insulin resistance. Administration of insulin in such a physiologic manner appears to improve insulin sensitivity, lower HgbA1c, and, in some instances, has been associated with the reversal of end-organ damage that leads to complications of diabetes. This review outlines the rationale for how the physiologic secretion of insulin orchestrates glucose metabolism, and how mimicking this secretion profile may serve to improve glycemic control, reduce cellular inflammation, and potentially improve outcomes in patients with diabetes.
Collapse
Affiliation(s)
| | - Frank Greenway
- Clinical Trials Unit, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 77808, USA
| | - Tori R Tucker
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92617, USA
| | - Michael Alexander
- Department of Surgery, University of California Irvine, Orange, CA 92686, USA
| | - Levonika K Jackson
- Well Cell Global, Medical and Scientific Advisory Board, Houston, TX 77079, USA
| | - Scott A Hepford
- Well Cell Global, Medical and Scientific Advisory Board, Houston, TX 77079, USA
| | - Brian Loveridge
- Well Cell Global, Medical and Scientific Advisory Board, Houston, TX 77079, USA
| | - Jonathan R T Lakey
- Department of Surgery, University of California Irvine, Orange, CA 92686, USA
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92868, USA
| |
Collapse
|
6
|
Deng X, Kato H, Taguchi Y, Nakata T, Umeda M. Intracellular glucose starvation inhibits osteogenic differentiation in human periodontal ligament cells. J Periodontal Res 2023; 58:607-620. [PMID: 36883427 DOI: 10.1111/jre.13112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/09/2023]
Abstract
BACKGROUND Periodontal ligament cells (PDLCs), as mesenchymal cells in the oral cavity, are closely linked to periodontal tissue regeneration. However, the effect of local glucose deficiency on periodontal tissue regeneration, such as immediately post-surgery, remains unknown. OBJECTIVE In the present study, we investigated the effect of a low-glucose environment on the proliferation and osteogenic differentiation of PDLCs. MATERIALS AND METHODS We used media with five glucose concentrations (100, 75, 50, 25, and 0 mg/dL) and focused on the effects of a low-glucose environment on the proliferation, osteogenic differentiation, and autophagy of PDLCs. Additionally, we focused on changes in lactate production in a low-glucose environment and investigated the involvement of lactate with AZD3965, a monocarboxylate transporter-1 (MCT-1) inhibitor. RESULTS The low-glucose environment inhibited PDLCs proliferation, migration, and osteogenic differentiation, and induced the expression of the autophagy-related factors LC3 and p62. Lactate and ATP production were decreased under low-glucose conditions. The addition of AZD3965 (MCT-1 inhibitor) in normal glucose conditions caused a similar trend as in low-glucose conditions on PDLCs. CONCLUSION Our results suggest lactate production through glucose metabolism in the osteogenic differentiation of PDLCs. A low-glucose environment decreased lactate production, inhibiting cell proliferation, migration, and osteogenic differentiation and inducing autophagy in PDLCs.
Collapse
Affiliation(s)
- Xin Deng
- Department of Periodontology, Osaka Dental University, Osaka, Japan
| | - Hirohito Kato
- Department of Periodontology, Osaka Dental University, Osaka, Japan
| | - Yoichiro Taguchi
- Department of Periodontology, Osaka Dental University, Osaka, Japan
| | - Takaya Nakata
- Department of Periodontology, Osaka Dental University, Osaka, Japan
| | - Makoto Umeda
- Department of Periodontology, Osaka Dental University, Osaka, Japan
| |
Collapse
|
7
|
El-Samad LM, Hassan MA, Basha AA, El-Ashram S, Radwan EH, Abdul Aziz KK, Tamer TM, Augustyniak M, El Wakil A. Carboxymethyl cellulose/sericin-based hydrogels with intrinsic antibacterial, antioxidant, and anti-inflammatory properties promote re-epithelization of diabetic wounds in rats. Int J Pharm 2022; 629:122328. [PMID: 36280221 DOI: 10.1016/j.ijpharm.2022.122328] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022]
|
8
|
Li S, Yang D, Gao X, Yao S, Wang S, Zhu J, Shu J. Argpyrimidine bonded to RAGE regulates autophagy and cell cycle to cause periodontal destruction. J Cell Physiol 2022; 237:4460-4476. [PMID: 36166691 DOI: 10.1002/jcp.30886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/06/2022]
Abstract
Argpyrimidine (APMD), a methylglyoxal-arginine-derived product, is one of the main products of diabetes mellitus. We aimed to systematically investigate the role of APMD in regulating autophagy activity, with a specific focus on the finding of APDM binding molecule, matching amino acid residues, autophagy flux and proteins, cell cycle arrest, cell skeleton and migration, PI3K/AKT/mTOR pathways, inflammatory signals, alveolar bone destruction, and inhibition verification. In this study, binding to 59/94/121 amino acid residues of advanced glycosylation end product receptor (RAGE), APMD suppressed PI3K/AKT/mTOR pathway to attenuate cell survival of periodontal ligament cells (PDLCs). Simultaneously, autophagy proteins ATG5, Beclin1, and LC3-II/I expression ratio were upregulated while P62/SQSTM was downregulated. Cell cycle arrested at G0/G1 with enhancing Cyclin D1/CDK4 and decreasing Cyclin A/CDK2 expression. Inhibition of autophagy abrogated APMD-induced cell cycle arrest. Furthermore, the inflammation regulation network of matrix metalloproteinase (MMP)-2, MMP-9, MAPKs and NF-κB pathways were activated by APMD. Rat periodontal models confirmed that APMD induced alveolar bone resorption, increased inflammatory infiltrates, and degraded collagen fibers through RAGE and PI3K. APMD-induced autophagy, G0/G1 arrest, pro-inflammatory signals activating and periodontal destruction were reversed by RAGE knockdown while aggravated by PI3K inhibitor. This study provides the first evidence that APMD bind to RAGE to regulate autophagy and cell cycle of PDLCs through the PI3K/AKT/mTOR pathway, thereby promoting periodontal destruction.
Collapse
Affiliation(s)
- Sihong Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS), Key Laboratory of Oral Biomedicine Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Dong Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS), Key Laboratory of Oral Biomedicine Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xudong Gao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS), Key Laboratory of Oral Biomedicine Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Siqi Yao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS), Key Laboratory of Oral Biomedicine Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shuining Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS), Key Laboratory of Oral Biomedicine Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Junli Zhu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS), Key Laboratory of Oral Biomedicine Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jingjing Shu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS), Key Laboratory of Oral Biomedicine Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Li R, Kato H, Taguchi Y, Deng X, Minagawa E, Nakata T, Umeda M. Glucose Starvation-Caused Oxidative Stress Induces Inflammation and Autophagy in Human Gingival Fibroblasts. Antioxidants (Basel) 2022; 11:antiox11101907. [PMID: 36290630 PMCID: PMC9598069 DOI: 10.3390/antiox11101907] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/14/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Gingival tissue experiences an environment of nutrient shortage, such as low glucose conditions, after periodontal surgery. Our previous studies found that this low glucose condition inhibits normal gingival cell functions. However, the mechanism by which this glucose-deficient environment causes cellular damage to human gingival fibroblasts (HGnFs) remains unclear. This study aimed to investigate the biological effects of ROS induction on HGnFs under low glucose conditions. ROS levels and cellular anti-ROS ability of HGnFs under different glucose concentrations were evaluated by measuring ROS formation and the expression of superoxide dismutase and heme oxygenase 1. Changes in cellular viability were investigated using 5-bromo-2′-deoxyuridine assay and cell survival detection, and the cellular damage was evaluated by the expression of inflammatory cytokines and changes in the expression of autophagy-related protein. ROS formation was then blocked using N-acetyl-L-cysteine (NAC), and the effects of ROS on HGnFs under low glucose conditions were investigated. Low glucose conditions induced ROS accumulation, reduced cellular activity, and induced inflammation and autophagy. After NAC application, the anti-ROS capacity increased, cellular activity improved, and inflammation and autophagy were controlled. This can be effectively controlled by the application of antioxidants such as NAC.
Collapse
|
10
|
Ripszky Totan A, Imre MM, Parvu S, Meghea D, Radulescu R, Enasescu DSA, Moisa MR, Pituru SM. Autophagy Plays Multiple Roles in the Soft-Tissue Healing and Osseointegration in Dental Implant Surgery-A Narrative Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6041. [PMID: 36079421 PMCID: PMC9457242 DOI: 10.3390/ma15176041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/21/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Dental endo-osseous implants have become a widely used treatment for replacing missing teeth. Dental implants are placed into a surgically created osteotomy in alveolar bone, the healing of the soft tissue lesion and the osseointegration of the implant being key elements to long-term success. Autophagy is considered the major intracellular degradation system, playing important roles in various cellular processes involved in dental implant integration. The aim of this review is an exploration of autophagy roles in the main cell types involved in the healing and remodeling of soft tissue lesions and implant osseointegration, post-implant surgery. We have focused on the autophagy pathway in macrophages, endothelial cells; osteoclasts, osteoblasts; fibroblasts, myofibroblasts and keratinocytes. In macrophages, autophagy modulates innate and adaptive immune responses playing a key role in osteo-immunity. Autophagy induction in endothelial cells promotes apoptosis resistance, cell survival, and protection against oxidative stress damage. The autophagic machinery is also involved in transporting stromal vesicles containing mineralization-related factors to the extracellular matrix and regulating osteoblasts' functions. Alveolar bone remodeling is achieved by immune cells differentiation into osteoclasts; autophagy plays an important and active role in this process. Autophagy downregulation in fibroblasts induces apoptosis, leading to better wound healing by improving excessive deposition of extracellular matrix and inhibiting fibrosis progression. Autophagy seems to be a dual actor on the scene of dental implant surgery, imposing further research in order to completely reveal its positive features which may be essential for clinical efficacy.
Collapse
Affiliation(s)
- Alexandra Ripszky Totan
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Marina Melescanu Imre
- Department of Complete Denture, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Simona Parvu
- Department of Complementary Sciences, Hygiene and Medical Ecology Discipline, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Daniela Meghea
- Department of Complete Denture, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Radu Radulescu
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Dan Sebastian Alexandru Enasescu
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Mihai Radu Moisa
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Silviu Mirel Pituru
- Department of Professional Organization and Medical Legislation-Malpractice, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
11
|
Zhu W, Dong W, Zhang S, Shuai Y. Alterations between Autophagy and Apoptosis in Alveolar Bone Mesenchymal Stem Cells under Orthodontic Force and Their Effects on Osteogenesis. J HARD TISSUE BIOL 2022. [DOI: 10.2485/jhtb.31.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Wenyin Zhu
- Department of The Third Outpatient, Nanjing Stomatological Hospital, Medical School of Nanjing University
| | - Wenrui Dong
- Department of The Third Outpatient, Nanjing Stomatological Hospital, Medical School of Nanjing University
| | - Shuangshuang Zhang
- Department of The Third Outpatient, Nanjing Stomatological Hospital, Medical School of Nanjing University
| | - Yi Shuai
- Department of Stomatology, General Hospital of Eastern Theater Command
| |
Collapse
|