1
|
Ju H, Chung YH, Kwon S, Cho EB, Park KA, Min JH. Usefulness of the MFIS-K, FSS, and FACIT-F Fatigue Scales in Korean Patients With MS, NMOSD, and MOGAD. J Clin Neurol 2024; 20:431-438. [PMID: 38951976 PMCID: PMC11220359 DOI: 10.3988/jcn.2023.0328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/14/2024] [Accepted: 03/02/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND AND PURPOSE Fatigue is common in demyelinating disorders of the central nervous system (CNS), including multiple sclerosis (MS), neuromyelitis optica spectrum disorder (NMOSD), and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD). We aimed to validate the usefulness of the Functional Assessment of Chronic Illness Therapy-Fatigue (FACIT-F) and the Fatigue Severity Scale (FSS) relative to the Korean version of the Modified Fatigue Impact Scale (MFIS-K) in Korean patients with MS, NMOSD, and MOGAD. METHODS There were 294 patients with MS (n=120), NMOSD (n=103), or MOGAD (n=71) enrolled in a prospective demyelinating CNS registry. Fatigue was measured using the FACIT-F, MFIS-K, and FSS. Sleep quality, quality of life, depression, and pain were evaluated using the Pittsburgh Sleep Quality Index (PSQI), 36-item Short-Form Survey (SF-36), and Beck Depression Inventory-II (BDI-II). RESULTS The MFIS-K, FACIT-F, and FSS scores showed high internal consistencies and strong correlations with each other in the MS, NMOSD, and MOGAD groups. The scores on all three fatigue scales were correlated with PSQI, SF-36, and BDI-II results in the three groups. The areas under the receiver operating characteristic curves for the FSS and FACIT-F were 0.834 and 0.835, respectively, for MS, 0.877 and 0.833 for NMOSD, and 0.925 and 0.883 for MOGAD. CONCLUSIONS These results suggest that the MFIS-K, FSS, and FACIT-F are useful and valuable assessment instruments for evaluating fatigue in Korean patients with MS, NMOSD, and MOGAD.
Collapse
Affiliation(s)
- Hyunjin Ju
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Korea
- Department of Neurology, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul, Korea
| | - Yeon Hak Chung
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Korea
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Soonwook Kwon
- Department of Neurology, Inha University Hospital, Incheon, Korea
| | - Eun Bin Cho
- Department of Neurology, College of Medicine, Gyeongsang Institute of Health Science, Gyeongsang National University, Jinju, Korea
- Department of Neurology, Gyeongsang National University Changwon Hospital, Changwon, Korea
| | - Kyung-Ah Park
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ju-Hong Min
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, Korea.
| |
Collapse
|
2
|
Wang Y, Yang Z, Zheng X, Liang X, Chen J, He T, Zhu Y, Wu L, Huang M, Zhang N, Zhou F. Temporal and topological properties of dynamic networks reflect disability in patients with neuromyelitis optica spectrum disorders. Sci Rep 2024; 14:4199. [PMID: 38378887 PMCID: PMC10879085 DOI: 10.1038/s41598-024-54518-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 02/13/2024] [Indexed: 02/22/2024] Open
Abstract
Approximately 36% of patients with neuromyelitis optica spectrum disorders (NMOSD) suffer from severe visual and motor disability (blindness or light perception or unable to walk) with abnormalities of whole-brain functional networks. However, it remains unclear how whole-brain functional networks and their dynamic properties are related to clinical disability in patients with NMOSD. Our study recruited 30 NMOSD patients (37.70 ± 11.99 years) and 45 healthy controls (HC, 41.84 ± 11.23 years). The independent component analysis, sliding-window approach and graph theory analysis were used to explore the static strength, time-varying and topological properties of large-scale functional networks and their associations with disability in NMOSD. Compared to HC, NMOSD patients showed significant alterations in dynamic networks rather than static networks. Specifically, NMOSD patients showed increased occurrence (fractional occupancy; P < 0.001) and more dwell times of the low-connectivity state (P < 0.001) with fewer transitions (P = 0.028) between states than HC, and higher fractional occupancy, increased dwell times of the low-connectivity state and lower transitions were related to more severe disability. Moreover, NMOSD patients exhibited altered small-worldness, decreased degree centrality and reduced clustering coefficients of hub nodes in dynamic networks, related to clinical disability. NMOSD patients exhibited higher occurrence and more dwell time in low-connectivity states, along with fewer transitions between states and decreased topological organizations, revealing the disrupted communication and coordination among brain networks over time. Our findings could provide new perspective to help us better understand the neuropathological mechanism of the clinical disability in NMOSD.
Collapse
Affiliation(s)
- Yao Wang
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
- Clinical Research Center for Medical Imaging in Jiangxi Province, Nanchang, 330006, Jiangxi Province, China
| | - Ziwei Yang
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
- Clinical Research Center for Medical Imaging in Jiangxi Province, Nanchang, 330006, Jiangxi Province, China
| | - Xiumei Zheng
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
- Clinical Research Center for Medical Imaging in Jiangxi Province, Nanchang, 330006, Jiangxi Province, China
| | - Xiao Liang
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
- Clinical Research Center for Medical Imaging in Jiangxi Province, Nanchang, 330006, Jiangxi Province, China
| | - Jin Chen
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Ting He
- Department of Radiology, Pingxiang People's Hospital, Pingxiang, 337055, Jiangxi Province, China
| | - Yanyan Zhu
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
- Clinical Research Center for Medical Imaging in Jiangxi Province, Nanchang, 330006, Jiangxi Province, China
| | - Lin Wu
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
- Clinical Research Center for Medical Imaging in Jiangxi Province, Nanchang, 330006, Jiangxi Province, China
| | - Muhua Huang
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
- Clinical Research Center for Medical Imaging in Jiangxi Province, Nanchang, 330006, Jiangxi Province, China
| | - Ningnannan Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Fuqing Zhou
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China.
- Clinical Research Center for Medical Imaging in Jiangxi Province, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
3
|
Duan Y, Rui Q, Yang Y, Tian J, Cao S, Zhu F, Duan X, Gao H, Ji X, Xiao X, Li Y, Xue Q. Correlation of GABA + levels in the medial prefrontal cortex and circulating follicular helper T cells in neuromyelitis optica spectrum disorder patients with cognitive impairment. Brain Behav 2024; 14:e3433. [PMID: 38383066 PMCID: PMC10881283 DOI: 10.1002/brb3.3433] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/22/2024] [Accepted: 01/27/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Neuromyelitis optica spectrum disorder (NMOSD) associated with cognitive impairment (CI) is acknowledged. However, the underlying pathogenesis and involvement of the immune system remain unclear. OBJECTIVES This study aimed to investigate the alterations in immune cells, cytokines, and GABA+ levels in NMOSD patients with cognitive deficits. METHODS Thirty-eight NMOSD patients and 38 healthy controls (HCs) were included. NMOSD patients were stratified as NMOSD-CI and NMOSD-CP groups. The difference in cognitive functions, Tfh and cytokines, and GABA+ levels were assessed, and their correlations were calculated. RESULTS NMOSD-CI patients showed worse performance on all cognitive tests, and the percentage of circulating follicular helper T cells (cTfh) was significantly elevated. The frequency of cTfh was positively and negatively correlated with Stroop-A and AVLT long-delayed scores, respectively. IL-21 was remarkably higher in NMOSD-CI and NMOSD-CP. The level of GABA+ in medial prefrontal cortex (mPFC) was significantly decreased in NMOSD-CI and was proved positively and negatively correlated with Symbol Digit Modalities Test and the frequency of circulating Tfh cells, respectively. CONCLUSION In NMOSD-CI patients, all cognitive domains were impacted, , while GABA+ levels in mPFC were decreased. GABA+ levels in NMOSD-CI were negatively correlated with the frequency of cTfh, suggesting the underlying coupling mechanism between immune responses and neurotransmitter metabolism in CI in NMOSD patients.
Collapse
Affiliation(s)
- Yinghui Duan
- Department of NeurologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Qianyun Rui
- Department of NeurologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yang Yang
- Department of RadiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Jingluan Tian
- Department of NeurologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Shugang Cao
- Department of NeurologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Department of NeurologySecond People's Hospital of HefeiHefei Hospital Affiliated to Anhui Medical UniversityHefeiChina
| | - Feng Zhu
- Department of NeurologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xiaoyu Duan
- Department of NeurologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Hanqing Gao
- Department of NeurologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xiaopei Ji
- Department of NeurologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xinyi Xiao
- Department of NeurologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yonggang Li
- Department of RadiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Medical ImagingSoochow UniversitySuzhouChina
| | - Qun Xue
- Department of NeurologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Clinical Research Center of Neurology, Jiangsu Institute of Clinical ImmunologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
4
|
Siriratnam P, Huda S, Butzkueven H, van der Walt A, Jokubaitis V, Monif M. A comprehensive review of the advances in neuromyelitis optica spectrum disorder. Autoimmun Rev 2023; 22:103465. [PMID: 37852514 DOI: 10.1016/j.autrev.2023.103465] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/13/2023] [Indexed: 10/20/2023]
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is a rare relapsing neuroinflammatory autoimmune astrocytopathy, with a predilection for the optic nerves and spinal cord. Most cases are characterised by aquaporin-4-antibody positivity and have a relapsing disease course, which is associated with accrual of disability. Although the prognosis in NMOSD has improved markedly over the past few years owing to advances in diagnosis and therapeutics, it remains a severe disease. In this article, we review the evolution of our understanding of NMOSD, its pathogenesis, clinical features, disease course, treatment options and associated symptoms. We also address the gaps in knowledge and areas for future research focus.
Collapse
Affiliation(s)
- Pakeeran Siriratnam
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Saif Huda
- Department of Neurology, Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Helmut Butzkueven
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Anneke van der Walt
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Vilija Jokubaitis
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Mastura Monif
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, Victoria, Australia; Department of Neurology, The Royal Melbourne Hospital, Parkville, VIC, Australia.
| |
Collapse
|
5
|
Seok JM, Cho W, Chung YH, Ju H, Kim ST, Seong JK, Min JH. Differentiation between multiple sclerosis and neuromyelitis optica spectrum disorder using a deep learning model. Sci Rep 2023; 13:11625. [PMID: 37468553 DOI: 10.1038/s41598-023-38271-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023] Open
Abstract
Multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD) are autoimmune inflammatory disorders of the central nervous system (CNS) with similar characteristics. The differential diagnosis between MS and NMOSD is critical for initiating early effective therapy. In this study, we developed a deep learning model to differentiate between multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD) using brain magnetic resonance imaging (MRI) data. The model was based on a modified ResNet18 convolution neural network trained with 5-channel images created by selecting five 2D slices of 3D FLAIR images. The accuracy of the model was 76.1%, with a sensitivity of 77.3% and a specificity of 74.8%. Positive and negative predictive values were 76.9% and 78.6%, respectively, with an area under the curve of 0.85. Application of Grad-CAM to the model revealed that white matter lesions were the major classifier. This compact model may aid in the differential diagnosis of MS and NMOSD in clinical practice.
Collapse
Affiliation(s)
- Jin Myoung Seok
- Department of Neurology, Soonchunhyang University Hospital Cheonan, Soonchunhyang University College of Medicine, Cheonan, South Korea
| | - Wanzee Cho
- Department of Artificial Intelligence, Korea University, Seoul, South Korea
| | - Yeon Hak Chung
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Department of Neurology, Neuroscience Center, Samsung Medical Center, Seoul, South Korea
| | - Hyunjin Ju
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Department of Neurology, Neuroscience Center, Samsung Medical Center, Seoul, South Korea
| | - Sung Tae Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Joon-Kyung Seong
- Department of Artificial Intelligence, Korea University, Seoul, South Korea.
- School of Biomedical Engineering, Korea University, Seoul, South Korea.
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, South Korea.
| | - Ju-Hong Min
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
- Department of Neurology, Neuroscience Center, Samsung Medical Center, Seoul, South Korea.
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, 50 Irwon-dong, Gangnam-gu, Seoul, 135-710, South Korea.
| |
Collapse
|
6
|
Zhang Y, Chen HX, Shi ZY, Du Q, Wang JC, Wang XF, Qiu YH, Lang YL, Kong LY, Cai LJ, Lin X, Mou ZC, Luo WQ, Li SJ, Zhou HY. Brain structural and functional connectivity alterations are associated with fatigue in neuromyelitis optica spectrum disorder. BMC Neurol 2022; 22:235. [PMID: 35761294 PMCID: PMC9235096 DOI: 10.1186/s12883-022-02757-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/15/2022] [Indexed: 12/04/2022] Open
Abstract
Background Many patients with neurological disorders experience chronic fatigue, but the neural mechanisms involved are unclear. Objective Here we investigated whether the brain structural and functional connectivity alterations were involved in fatigue related to neuromyelitis optica spectrum disorder (NMOSD). Methods This prospective pilot study used structural and resting-state functional brain magnetic resonance imaging to compare total cortical thickness, cortical surface area, deep gray matter volume and functional connectivity (FC) between 33 patients with NMOSD and 20 healthy controls (HCs). Patients were subgrouped as low fatigue (LF) and high fatigue (HF). Results HF patients scored higher on the Hamilton Anxiety Rating Scale and Hamilton Rating Scale for Depression than LF patients and HCs. The two patient subgroups and HC group did not differ significantly in cortical thickness, cortical surface area and volumes of the bilateral caudate nucleus, bilateral putamen, bilateral amygdala, bilateral hippocampus, bilateral thalamus proper or right nucleus accumbens (p > 0.05). However, after correcting for age, sex, years of education, anxiety and depression, HF patients showed larger left pallidum than HCs (0.1573 ± 0.0214 vs 0.1372 ± 0.0145, p = 0.009). Meanwhile, both LF patients (0.0377 ± 0.0052 vs 0.0417 ± 0.0052, p = 0.009) and HF patients (0.0361 ± 0.0071 vs 0.0417 ± 0.0052, p = 0.013) showed smaller left nucleus accumbens than HCs.. Compared with LF patients, HF patients showed significantly decreased FC between the left pallidum and bilateral cerebellar posterior lobes. Conclusions This was the first evidence linking structural and functional alterations in the brain to fatigue in NMOSD, and in the future, long term follow-up was necessary.
Collapse
|