1
|
Morena F, Cabrera AR, Greene NP. Exploring heterogeneity: a dive into preclinical models of cancer cachexia. Am J Physiol Cell Physiol 2024; 327:C310-C328. [PMID: 38853648 PMCID: PMC11427020 DOI: 10.1152/ajpcell.00317.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 06/11/2024]
Abstract
Cancer cachexia (CC) is a multifactorial and complex syndrome experienced by up to 80% of patients with cancer and implicated in ∼40% of cancer-related deaths. Given its significant impact on patients' quality of life and prognosis, there has been a growing emphasis on elucidating the underlying mechanisms of CC using preclinical models. However, the mechanisms of cachexia appear to differ across several variables including tumor type and model and biologic variables such as sex. These differences may be exacerbated by variance in experimental approaches and data reporting. This review examines literature spanning from 2011 to March 2024, focusing on common preclinical models of CC, including Lewis Lung Carcinoma, pancreatic KPC, and colorectal colon-26 and Apcmin/+ models. Our analysis reveals considerable heterogeneity in phenotypic outcomes, and investigated mechanisms within each model, with particular attention to sex differences that may be exacerbated through methodological differences. Although searching for unified mechanisms is critical, we posit that effective treatment approaches are likely to leverage the heterogeneity presented by the tumor and pertinent biological variables to direct specific interventions. In exploring this heterogeneity, it becomes critical to consider methodological and data reporting approaches to best inform further research.
Collapse
Affiliation(s)
- Francielly Morena
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, United States
| | - Ana Regina Cabrera
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, United States
| | - Nicholas P Greene
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, United States
| |
Collapse
|
2
|
Binang HB, Perera CJ, Apte MV. Role of Pancreatic Tumour-Derived Exosomes and Their Cargo in Pancreatic Cancer-Related Diabetes. Int J Mol Sci 2023; 24:10203. [PMID: 37373351 DOI: 10.3390/ijms241210203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
One of the most common and deadly types of pancreatic cancer (PC) is pancreatic ductal adenocarcinoma (PDAC), with most patients succumbing to the disease within one year of diagnosis. Current detection strategies do not address asymptomatic PC; therefore, patients are diagnosed at an advanced stage when curative treatment is often no longer possible. In order to detect PC in asymptomatic patients earlier, the risk factors that could serve as reliable markers need to be examined. Diabetic mellitus (DM) is a significant risk factor for this malignancy and can be both a cause and consequence of PC. Typically, DM caused by PC is known as new-onset, pancreatogenic, pancreoprivic, or pancreatic cancer-related diabetes (PCRD). Although PCRD is quite distinct from type 2 DM (T2DM), there are currently no biomarkers that differentiate PCRD from T2DM. To identify such biomarkers, a better understanding of the mechanisms mediating PCRD is essential. To this end, there has been a growing research interest in recent years to elucidate the role of tumour-derived exosomes and their cargo in the pathogenesis of PCRD. Exosomes derived from tumours can be recognized for their specificity because they reflect the characteristics of their parent cells and are important in intercellular communication. Their cargo consists of proteins, lipids, and nucleic acids, which can be transferred to and alter the behaviour of recipient cells. This review provides a concise overview of current knowledge regarding tumour-derived exosomes and their cargo in PCRD and discusses the potential areas worthy of further study.
Collapse
Affiliation(s)
- Helen B Binang
- Pancreatic Research Group, South Western Sydney Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia
- Ingham Institute for Applied Medical Research, Sydney, NSW 2170, Australia
| | - Chamini J Perera
- Pancreatic Research Group, South Western Sydney Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia
- Ingham Institute for Applied Medical Research, Sydney, NSW 2170, Australia
| | - Minoti V Apte
- Pancreatic Research Group, South Western Sydney Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia
- Ingham Institute for Applied Medical Research, Sydney, NSW 2170, Australia
| |
Collapse
|
3
|
Yu S, Luan Y, Tang S, Abazarikia A, Dong R, Caffrey TC, Hollingsworth MA, Oupicky D, Kim S. Uncovering Tumor-Promoting Roles of Activin A in Pancreatic Ductal Adenocarcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207010. [PMID: 37083240 PMCID: PMC10238186 DOI: 10.1002/advs.202207010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/22/2023] [Indexed: 05/03/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers with high incidence rates of metastasis and cachexia. High circulating activin A, a homodimer of inhibin βA subunits that are encoded by INHBA gene, predicts poor survival among PDAC patients. However, it still raises the question of whether activin A suppression renders favorable PDAC outcomes. Here, the authors demonstrate that activin A is abundantly detected in tumor and stromal cells on PDAC tissue microarray and mouse PDAC sections. In orthotopic male mice, activin A suppression, which is acquired by tumor-targeted Inhba siRNA using cholesterol-modified polymeric nanoparticles, retards tumor growth/metastasis and cachexia and improves survival when compared to scramble siRNA-treated group. Histologically, activin A suppression coincides with decreased expression of proliferation marker Ki67 but increased accumulation of α-SMAhigh fibroblasts and cytotoxic T cells in the tumors. In vitro data demonstrate that activin A promotes KPC cell proliferation and induces the downregulation of α-SMA and upregulation of IL-6 in pancreatic stellate cells (PSC) in the SMAD3-dependent mechanism. Moreover, conditioned media from activin A-stimulated PSC promoted KPC cell growth. Collectively, our data provide a mechanistic basis for tumor-promoting roles of activin A and support therapeutic potentials of tumor activin A suppression for PDAC.
Collapse
Affiliation(s)
- Seok‐Yeong Yu
- Olson Center for Women's HealthDepartment of Obstetrics and GynecologyCollege of MedicineUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Yi Luan
- Olson Center for Women's HealthDepartment of Obstetrics and GynecologyCollege of MedicineUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Siyuan Tang
- Center for Drug Delivery and NanomedicineDepartment of Pharmaceutical SciencesCollege of PharmacyUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Amirhossein Abazarikia
- Olson Center for Women's HealthDepartment of Obstetrics and GynecologyCollege of MedicineUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Rosemary Dong
- Olson Center for Women's HealthDepartment of Obstetrics and GynecologyCollege of MedicineUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Thomas C. Caffrey
- Eppley Institute for Research in Cancer and Allied DiseasesUniversity of Nebraska Medical CenterOmahaNE68198USA
- Fred & Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Michael A. Hollingsworth
- Eppley Institute for Research in Cancer and Allied DiseasesUniversity of Nebraska Medical CenterOmahaNE68198USA
- Fred & Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNEUSA
| | - David Oupicky
- Center for Drug Delivery and NanomedicineDepartment of Pharmaceutical SciencesCollege of PharmacyUniversity of Nebraska Medical CenterOmahaNEUSA
- Fred & Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNEUSA
| | - So‐Youn Kim
- Olson Center for Women's HealthDepartment of Obstetrics and GynecologyCollege of MedicineUniversity of Nebraska Medical CenterOmahaNEUSA
- Center for Drug Delivery and NanomedicineDepartment of Pharmaceutical SciencesCollege of PharmacyUniversity of Nebraska Medical CenterOmahaNEUSA
- Fred & Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNEUSA
| |
Collapse
|
4
|
Ferrer M, Anthony TG, Ayres JS, Biffi G, Brown JC, Caan BJ, Cespedes Feliciano EM, Coll AP, Dunne RF, Goncalves MD, Grethlein J, Heymsfield SB, Hui S, Jamal-Hanjani M, Lam JM, Lewis DY, McCandlish D, Mustian KM, O'Rahilly S, Perrimon N, White EP, Janowitz T. Cachexia: A systemic consequence of progressive, unresolved disease. Cell 2023; 186:1824-1845. [PMID: 37116469 PMCID: PMC11059056 DOI: 10.1016/j.cell.2023.03.028] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/15/2023] [Accepted: 03/23/2023] [Indexed: 04/30/2023]
Abstract
Cachexia, a systemic wasting condition, is considered a late consequence of diseases, including cancer, organ failure, or infections, and contributes to significant morbidity and mortality. The induction process and mechanistic progression of cachexia are incompletely understood. Refocusing academic efforts away from advanced cachexia to the etiology of cachexia may enable discoveries of new therapeutic approaches. Here, we review drivers, mechanisms, organismal predispositions, evidence for multi-organ interaction, model systems, clinical research, trials, and care provision from early onset to late cachexia. Evidence is emerging that distinct inflammatory, metabolic, and neuro-modulatory drivers can initiate processes that ultimately converge on advanced cachexia.
Collapse
Affiliation(s)
- Miriam Ferrer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; MRC Cancer Unit, University of Cambridge, Hutchison Research Centre, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK
| | - Tracy G Anthony
- Department of Nutritional Sciences, Rutgers School of Environmental and Biological Sciences, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Janelle S Ayres
- Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Giulia Biffi
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge CB2 0RE, UK
| | - Justin C Brown
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Bette J Caan
- Kaiser Permanente Northern California Division of Research, Oakland, CA 94612, USA
| | | | - Anthony P Coll
- Wellcome Trust-MRC Institute of Metabolic Science and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Richard F Dunne
- University of Rochester Medical Center, University of Rochester, Rochester, NY 14642, USA
| | - Marcus D Goncalves
- Division of Endocrinology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jonas Grethlein
- Ruprecht Karl University of Heidelberg, Heidelberg 69117, Germany
| | - Steven B Heymsfield
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Sheng Hui
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Mariam Jamal-Hanjani
- Department of Medical Oncology, University College London Hospitals, London WC1E 6DD, UK; Cancer Research UK Lung Cancer Centre of Excellence and Cancer Metastasis Laboratory, University College London Cancer Institute, London WC1E 6DD, UK
| | - Jie Min Lam
- Cancer Research UK Lung Cancer Centre of Excellence and Cancer Metastasis Laboratory, University College London Cancer Institute, London WC1E 6DD, UK
| | - David Y Lewis
- The Beatson Institute for Cancer Research, Cancer Research UK, Glasgow G61 1BD, UK
| | - David McCandlish
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Karen M Mustian
- University of Rochester Medical Center, University of Rochester, Rochester, NY 14642, USA
| | - Stephen O'Rahilly
- Wellcome Trust-MRC Institute of Metabolic Science and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Eileen P White
- Rutgers Cancer Institute of New Jersey, Department of Molecular Biology and Biochemistry, Rutgers University, The State University of New Jersey, New Brunswick, NJ 08901, USA; Ludwig Princeton Branch, Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ 08544, USA
| | - Tobias Janowitz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Northwell Health Cancer Institute, Northwell Health, New Hyde Park, NY 11042, USA.
| |
Collapse
|
5
|
Li X, Zhou J, Wang X, Li C, Ma Z, Wan Q, Peng F. Pancreatic cancer and fibrosis: Targeting metabolic reprogramming and crosstalk of cancer-associated fibroblasts in the tumor microenvironment. Front Immunol 2023; 14:1152312. [PMID: 37033960 PMCID: PMC10073477 DOI: 10.3389/fimmu.2023.1152312] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/09/2023] [Indexed: 04/11/2023] Open
Abstract
Pancreatic cancer is one of the most dangerous types of cancer today, notable for its low survival rate and fibrosis. Deciphering the cellular composition and intercellular interactions in the tumor microenvironment (TME) is a necessary prerequisite to combat pancreatic cancer with precision. Cancer-associated fibroblasts (CAFs), as major producers of extracellular matrix (ECM), play a key role in tumor progression. CAFs display significant heterogeneity and perform different roles in tumor progression. Tumor cells turn CAFs into their slaves by inducing their metabolic dysregulation, exacerbating fibrosis to acquire drug resistance and immune evasion. This article reviews the impact of metabolic reprogramming, effect of obesity and cellular crosstalk of CAFs and tumor cells on fibrosis and describes relevant therapies targeting the metabolic reprogramming.
Collapse
|
6
|
Yu YC, Ahmed A, Lai HC, Cheng WC, Yang JC, Chang WC, Chen LM, Shan YS, Ma WL. Review of the endocrine organ-like tumor hypothesis of cancer cachexia in pancreatic ductal adenocarcinoma. Front Oncol 2022; 12:1057930. [PMID: 36465353 PMCID: PMC9713001 DOI: 10.3389/fonc.2022.1057930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/26/2022] [Indexed: 08/30/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most fatal types of solid tumors, associated with a high prevalence of cachexia (~80%). PDAC-derived cachexia (PDAC-CC) is a systemic disease involving the complex interplay between the tumor and multiple organs. The endocrine organ-like tumor (EOLT) hypothesis may explain the systemic crosstalk underlying the deleterious homeostatic shifts that occur in PDAC-CC. Several studies have reported a markedly heterogeneous collection of cachectic mediators, signaling mechanisms, and metabolic pathways, including exocrine pancreatic insufficiency, hormonal disturbance, pro-inflammatory cytokine storm, digestive and tumor-derived factors, and PDAC progression. The complexities of PDAC-CC necessitate a careful review of recent literature summarizing cachectic mediators, corresponding metabolic functions, and the collateral impacts on wasting organs. The EOLT hypothesis suggests that metabolites, genetic instability, and epigenetic changes (microRNAs) are involved in cachexia development. Both tumors and host tissues can secrete multiple cachectic factors (beyond only inflammatory mediators). Some regulatory molecules, metabolites, and microRNAs are tissue-specific, resulting in insufficient energy production to support tumor/cachexia development. Due to these complexities, changes in a single factor can trigger bi-directional feedback circuits that exacerbate PDAC and result in the development of irreversible cachexia. We provide an integrated review based on 267 papers and 20 clinical trials from PubMed and ClinicalTrials.gov database proposed under the EOLT hypothesis that may provide a fundamental understanding of cachexia development and response to current treatments.
Collapse
Affiliation(s)
- Ying-Chun Yu
- Department of Medical Research, Department of Obstetrics and Gynecology, Department of Gastroenterology, and Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, Center for Tumor Biology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Azaj Ahmed
- Department of Medical Research, Department of Obstetrics and Gynecology, Department of Gastroenterology, and Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
| | - Hsueh-Chou Lai
- Department of Medical Research, Department of Obstetrics and Gynecology, Department of Gastroenterology, and Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Wei-Chung Cheng
- Graduate Institute of Biomedical Sciences, Center for Tumor Biology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Juan-Chern Yang
- Department of Medical Research, Department of Obstetrics and Gynecology, Department of Gastroenterology, and Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Wei-Chun Chang
- Department of Medical Research, Department of Obstetrics and Gynecology, Department of Gastroenterology, and Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, Center for Tumor Biology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Lu-Min Chen
- Department of Medical Research, Department of Obstetrics and Gynecology, Department of Gastroenterology, and Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
| | - Yan-Shen Shan
- Division of General Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Chen Kung University, Tainan, Taiwan
| | - Wen-Lung Ma
- Department of Medical Research, Department of Obstetrics and Gynecology, Department of Gastroenterology, and Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, Center for Tumor Biology, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Nursing, Asia University, Taichung, Taiwan
| |
Collapse
|
7
|
Adipose Tissue Wasting as a Determinant of Pancreatic Cancer-Related Cachexia. Cancers (Basel) 2022; 14:cancers14194754. [PMID: 36230682 PMCID: PMC9563866 DOI: 10.3390/cancers14194754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/20/2022] [Accepted: 09/27/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Pancreatic cancer (PC) is one of the deadliest cancers in the US. The poor prognosis of PC is related to diagnostic delay and the presence of unintended weight loss (cachexia) that commonly presents in PC patients even before diagnosis. However, the current understanding of how PC mediates cachexia is limited, and there are few treatments clinically available for cachexia. Based on the current literature, we demonstrate that PC-related cachexia primarily results from the wasting of adipose tissue, once thought to be merely a storage depot but now appreciated as an instrumental metabolic organ in the body. In addition, poor survival in PC patients was found to be associated with adipose tissue loss at diagnosis and during treatment. Therefore, identifying potential mediators and molecular mechanisms underlying adipose tissue loss would promise to pave the way for the development of effective interventions for PC-related cachexia Abstract Pancreatic cancer (PC) is the third leading cause of cancer-related death in the US, and its 5-year survival rate is approximately 10%. The low survival rates largely stem from diagnostic delay and the presence of significant adipose tissue and muscle wasting, commonly referred to as cachexia. Cachexia is present in nearly 80% of PC patients and is a key cause of poor response to treatment and about 20% of death in PC patients. However, there are few clinical interventions proven to be effective against PC-related cachexia. Different cancer types feature distinct secretome profiles and functional characteristics which would lead to cachexia development differently. Therefore, here we discuss affected tissues and potential mechanisms leading to cachexia in PC. We postulate that the most affected tissue during the development of PC-related cachexia is adipose tissue, historically and still thought to be just an inert repository for excess energy in relation to cancer-related cachexia. Adipose tissue loss is considerably greater than muscle loss in quantity and shows a correlation with poor survival in PC patients. Moreover, we suggest that PC mediates adipose atrophy by accelerating adipocyte lipid turnover and fibroblast infiltration.
Collapse
|