1
|
Moghaddam SJ, Savai R, Salehi-Rad R, Sengupta S, Kammer MN, Massion P, Beane JE, Ostrin EJ, Priolo C, Tennis MA, Stabile LP, Bauer AK, Sears CR, Szabo E, Rivera MP, Powell CA, Kadara H, Jenkins BJ, Dubinett SM, Houghton AM, Kim CF, Keith RL. Premalignant Progression in the Lung: Knowledge Gaps and Novel Opportunities for Interception of Non-Small Cell Lung Cancer. An Official American Thoracic Society Research Statement. Am J Respir Crit Care Med 2024; 210:548-571. [PMID: 39115548 PMCID: PMC11389570 DOI: 10.1164/rccm.202406-1168st] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Indexed: 08/13/2024] Open
Abstract
Rationale: Despite significant advances in precision treatments and immunotherapy, lung cancer is the most common cause of cancer death worldwide. To reduce incidence and improve survival rates, a deeper understanding of lung premalignancy and the multistep process of tumorigenesis is essential, allowing timely and effective intervention before cancer development. Objectives: To summarize existing information, identify knowledge gaps, formulate research questions, prioritize potential research topics, and propose strategies for future investigations into the premalignant progression in the lung. Methods: An international multidisciplinary team of basic, translational, and clinical scientists reviewed available data to develop and refine research questions pertaining to the transformation of premalignant lung lesions to advanced lung cancer. Results: This research statement identifies significant gaps in knowledge and proposes potential research questions aimed at expanding our understanding of the mechanisms underlying the progression of premalignant lung lesions to lung cancer in an effort to explore potential innovative modalities to intercept lung cancer at its nascent stages. Conclusions: The identified gaps in knowledge about the biological mechanisms of premalignant progression in the lung, together with ongoing challenges in screening, detection, and early intervention, highlight the critical need to prioritize research in this domain. Such focused investigations are essential to devise effective preventive strategies that may ultimately decrease lung cancer incidence and improve patient outcomes.
Collapse
|
2
|
Polinário G, Primo LMDG, Rosa MABC, Dett FHM, Barbugli PA, Roque-Borda CA, Pavan FR. Antimicrobial peptides as drugs with double response against Mycobacterium tuberculosis coinfections in lung cancer. Front Microbiol 2023; 14:1183247. [PMID: 37342560 PMCID: PMC10277934 DOI: 10.3389/fmicb.2023.1183247] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023] Open
Abstract
Tuberculosis and lung cancer are, in many cases, correlated diseases that can be confused because they have similar symptoms. Many meta-analyses have proven that there is a greater chance of developing lung cancer in patients who have active pulmonary tuberculosis. It is, therefore, important to monitor the patient for a long time after recovery and search for combined therapies that can treat both diseases, as well as face the great problem of drug resistance. Peptides are molecules derived from the breakdown of proteins, and the membranolytic class is already being studied. It has been proposed that these molecules destabilize cellular homeostasis, performing a dual antimicrobial and anticancer function and offering several possibilities of adaptation for adequate delivery and action. In this review, we focus on two important reason for the use of multifunctional peptides or peptides, namely the double activity and no harmful effects on humans. We review some of the main antimicrobial and anti-inflammatory bioactive peptides and highlight four that have anti-tuberculosis and anti-cancer activity, which may contribute to obtaining drugs with this dual functionality.
Collapse
Affiliation(s)
- Giulia Polinário
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | | | | | | - Paula Aboud Barbugli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | | - Fernando Rogério Pavan
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
3
|
Sheikhpour M, Mirbahari SN, Sadr M, Maleki M, Arabi M, Abolfathi H. A Comprehensive Study on the Correlation of Treatment, Diagnosis and Epidemiology of Tuberculosis and Lung Cancer. TANAFFOS 2023; 22:7-18. [PMID: 37920308 PMCID: PMC10618578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 12/24/2022] [Indexed: 11/04/2023]
Abstract
The correlation between tuberculosis (TB) and lung cancer (LC) in diagnosis, epidemiology, and treatment is still unclear. Based on different cohort and retrospective studies, this correlation could be justified by immune weakness because of exposure to TB which may increase the risk of LC. In this study, we tried to exhibit a prominent connection between TB and LC. The diagnosis and treatment of patients with concomitant TB and LC differ from patients with only one of the diseases. In this review, it was well clarified that the most practical diagnostic method for LC is chest tomography, biopsy, and histopathology, and for pulmonary TB sputum microscopic examination, Autofluorescence bronchoscopy (AFB), culture, and PCR. Also, immunological methods can be a good alternative for differential diagnosis. Most epidemiological studies were about concomitant TB and LC in TB-endemic areas, especially in the Middle East. The most suggested methods for definite treatment of LC are chemotherapy, radiotherapy, and surgery while for TB, a long course of anti-TB therapy can be used. Moreover, immunotherapy is considered a good treatment for lung cancer if the interferon-gamma release assay (IGRA) is negative.
Collapse
Affiliation(s)
- Mojgan Sheikhpour
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Seyedeh Nasim Mirbahari
- Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Makan Sadr
- Virology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mobina Maleki
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Mohadeseh Arabi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Hanie Abolfathi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
4
|
Will We Unlock the Benefit of Metformin for Patients with Lung Cancer? Lessons from Current Evidence and New Hypotheses. Pharmaceuticals (Basel) 2022; 15:ph15070786. [PMID: 35890085 PMCID: PMC9318003 DOI: 10.3390/ph15070786] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022] Open
Abstract
Metformin has been under basic and clinical study as an oncological repurposing pharmacological agent for several years, stemming from observational studies which consistently evidenced that subjects who were treated with metformin had a reduced risk for development of cancer throughout their lives, as well as improved survival outcomes when diagnosed with neoplastic diseases. As a result, several basic science studies have attempted to dissect the relationship between metformin’s metabolic mechanism of action and antineoplastic cellular signaling pathways. Evidence in this regard was compelling enough that a myriad of randomized clinical trials was planned and conducted in order to establish the effect of metformin treatment for patients with diverse neoplasms, including lung cancer. As with most novel antineoplastic agents, early results from these studies have been mostly discouraging, though a recent analysis that incorporated body mass index may provide significant information regarding which patient subgroups might derive the most benefit from the addition of metformin to their anticancer treatment. Much in line with the current pipeline for anticancer agents, it appears that the benefit of metformin may be circumscribed to a specific patient subgroup. If so, addition of metformin to antineoplastic agents could prove one of the most cost-effective interventions proposed in the context of precision oncology. Currently published reviews mostly rely on a widely questioned mechanism of action by metformin, which fails to consider the differential effects of the drug in lean vs. obese subjects. In this review, we analyze the pre-clinical and clinical information available to date regarding the use of metformin in various subtypes of lung cancer and, further, we present evidence as to the differential metabolic effects of metformin in lean and obese subjects where, paradoxically, the obese subjects have reported more benefit with the addition of metformin treatment. The novel mechanisms of action described for this biguanide may explain the different results observed in clinical trials published in the last decade. Lastly, we present novel hypothesis regarding potential biomarkers to identify who might reap benefit from this intervention, including the role of prolyl hydroxylase domain 3 (PHD3) expression to modify metabolic phenotypes in malignant diseases.
Collapse
|
5
|
Qin Y, Chen Y, Chen J, Xu K, Xu F, Shi J. The relationship between previous pulmonary tuberculosis and risk of lung cancer in the future. Infect Agent Cancer 2022; 17:20. [PMID: 35525982 PMCID: PMC9078090 DOI: 10.1186/s13027-022-00434-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/19/2022] [Indexed: 01/29/2023] Open
Abstract
Various investigations have expanded the views that tuberculosis is an important risk factor for lung cancer occurrence. Lung cancer originates from chronic inflammation and infection. It is becoming clearer that Mycobacterium tuberculosis (M.tb) in tuberculosis patients meticulously schemes multiple mechanisms to induce tumor formation and is indispensable to participate in the occurrence of lung cancer. In addition, some additional factors such as age, sex and smoking, accelerate the development of lung cancer after Mycobacterium tuberculosis infection. The clarification of these insights is fostering new diagnoses and therapeutic approaches to prevention of the patients developing from tuberculosis into lung cancer.
Collapse
Affiliation(s)
- Yongwei Qin
- Department of Pathogen Biology, Medical College, Nantong University, No. 19 Qixiu Road, Nantong, China.,Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Nantong Clinical Medical Research Center of Cardiothoracic Disease, and Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, China
| | - Yujie Chen
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Nantong Clinical Medical Research Center of Cardiothoracic Disease, and Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, China
| | - Jinliang Chen
- Department of Respiratory Medicine, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, No. 6 North Road Hai'er Xiang, Nantong, 226001, Jiangsu, China
| | - Kuang Xu
- Department of Pathogen Biology, Medical College, Nantong University, No. 19 Qixiu Road, Nantong, China
| | - Feifan Xu
- Affiliated Nantong Hospital of Shanghai University, No. 500 Yonghe Road, Nantong, China.
| | - Jiahai Shi
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Nantong Clinical Medical Research Center of Cardiothoracic Disease, and Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, China.
| |
Collapse
|