1
|
Viana AS, Tótola LPDV, Figueiredo AMS. ST105 Lineage of MRSA: An Emerging Implication for Bloodstream Infection in the American and European Continents. Antibiotics (Basel) 2024; 13:893. [PMID: 39335066 PMCID: PMC11429078 DOI: 10.3390/antibiotics13090893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Sequence-type 5 (ST5) of methicillin-resistant Staphylococcus aureus (MRSA), harboring the staphylococcal chromosomal cassette mec type IV (SCCmecIV), was first detected in Portugal. It emerged as a significant cause of healthcare-associated (HA) infection in pediatric units and was hence named the pediatric clone. Another ST5 lineage, which carries SCCmecII, also prevailed in the USA and Japan for multiple years. More recently, another MRSA lineage, ST105-SCCmecII, part of the evolution of clonal complex 5 (CC5) MRSA, has emerged as the cause of hospital-acquired bloodstream infection outbreaks in countries including Portugal, the USA, and Brazil. This article reviews studies on the epidemiology and evolution of these newly emerging pathogens. To this end, a search of PUBMED from inception to 2024 was performed to find articles reporting the occurrence of ST105 MRSA in epidemiologic studies. A second search was performed to find studies on MRSA, CC5, ST5, and SCCmecII. A search of PUBMED from 1999 to 2024 was also performed to identify studies on the genomics and evolution of ST5, CC5, and ST105 MRSA. Further studies were identified by analyzing the references of the previously selected articles from PUBMED. Most articles on ST105 MRSA were included in this review. Only articles written in English were included. Furthermore, only studies that used a reliable genotyping method (e.g., whole genome sequencing, or MLST) to classify the CC5 lineages were selected. The quality and selection of articles were based on the consensus assessment of the three authors in independent evaluations. In conclusion, ST105-SCCmecII is an emerging MRSA in several countries, being the second/third most important CC5 lineage, with a relatively high frequency in bloodstream infections. Of concern is the increased mortality from BSI in patients older than 15 years and the higher prevalence of ST105-SCCmecII in the blood of patients older than 60 years reported in some studies.
Collapse
Affiliation(s)
- Alice Slotfeldt Viana
- Departamento de Microbiologia Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Laís Pires do Valle Tótola
- Departamento de Microbiologia Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Agnes Marie Sá Figueiredo
- Departamento de Microbiologia Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Faculdade de Medicina, Programa de Pós-Graduação em Patologia, Universidade Federal Fluminense, Niterói 24033-900, Brazil
| |
Collapse
|
2
|
Oliveira MC, Boriollo MFG, de Souza AC, da Silva TA, da Silva JJ, Magalhães-Guedes KT, Dias CTDS, Bernardo WLDC, Höfling JF, de Sousa CP. Oral Staphylococcus Species and MRSA Strains in Patients with Orofacial Clefts Undergoing Surgical Rehabilitation Diagnosed by MALDI-TOF MS. Pathogens 2024; 13:763. [PMID: 39338954 PMCID: PMC11434827 DOI: 10.3390/pathogens13090763] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
This study investigated the occurrence and dynamics of oral Staphylococcus species in patients with orofacial clefts undergoing surgical rehabilitation treatment. Patients (n = 59) were statistically stratified and analyzed (age, gender, types of orofacial clefts, surgical history, and types of previous surgical rehabilitation). Salivary samples were obtained between hospitalization and the return to the specialized medical center. Microbiological diagnosis was performed by classical methods, and MALDI-TOF MS. MRSA strains (SCCmec type II, III, and IV) were characterized by the Decision Tree method. A total of 33 (55.9%) patients showed oral staphylococcal colonization in one, two, or three sampling steps. A high prevalence has been reported for S. aureus (including HA-, MRSA and CA-MRSA), followed by S. saprophyticus, S. epidermidis, S. sciuri, S. haemolyticus, S. lentus, S. arlettae, and S. warneri. The dynamics of oral colonization throughout surgical treatment and medical follow-up may be influenced by (i) imbalances in staphylococcal maintenance, (ii) efficiency of surgical asepsis or break of the aseptic chain, (iii) staphylococcal neocolonization in newly rehabilitated anatomical oral sites, and (iv) total or partial maintenance of staphylococcal species. The highly frequent clinical periodicity in specialized medical and dental centers may contribute to the acquisition of MRSA in these patients.
Collapse
Affiliation(s)
- Mateus Cardoso Oliveira
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas (FOP/UNICAMP), 901 Limeira Ave, Piracicaba 13414-903, SP, Brazil; (M.C.O.); (T.A.d.S.); (J.J.d.S.); (W.L.d.C.B.); (J.F.H.)
- Center for Nursing and Health, State University of Southwest Bahia (UESB), José Moreira Sobrinho Avenue, Jequié 45205-490, BA, Brazil
| | - Marcelo Fabiano Gomes Boriollo
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas (FOP/UNICAMP), 901 Limeira Ave, Piracicaba 13414-903, SP, Brazil; (M.C.O.); (T.A.d.S.); (J.J.d.S.); (W.L.d.C.B.); (J.F.H.)
- Department of Morphology and Pathology & Biotechnology Graduate Program (PPGBiotec), Center for Biological and Health Sciences (CCBS), Federal University of São Carlos (UFSCar), Km 235 Washington Luís Road, São Carlos 13565-905, SP, Brazil;
| | - Angélica Cristina de Souza
- Department of Biology, Federal University of Lavras (UFLA), s/n Edmir Sá Santos Rotary Interchange, Lavras 37203-202, MG, Brazil;
| | - Thaísla Andrielle da Silva
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas (FOP/UNICAMP), 901 Limeira Ave, Piracicaba 13414-903, SP, Brazil; (M.C.O.); (T.A.d.S.); (J.J.d.S.); (W.L.d.C.B.); (J.F.H.)
| | - Jeferson Júnior da Silva
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas (FOP/UNICAMP), 901 Limeira Ave, Piracicaba 13414-903, SP, Brazil; (M.C.O.); (T.A.d.S.); (J.J.d.S.); (W.L.d.C.B.); (J.F.H.)
| | - Karina Teixeira Magalhães-Guedes
- Department of Bromatological Analysis, Pharmacy Faculty, Federal University of Bahia (UFBA), 147 Barão de Jeremoabo Street, Salvador 40170-115, BA, Brazil
| | - Carlos Tadeu dos Santos Dias
- Department of Exact Sciences, College of Agriculture, University of São Paulo (ESALQ/USP), 11 Pádua Dias Ave, Piracicaba 13418-900, SP, Brazil;
| | - Wagner Luís de Carvalho Bernardo
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas (FOP/UNICAMP), 901 Limeira Ave, Piracicaba 13414-903, SP, Brazil; (M.C.O.); (T.A.d.S.); (J.J.d.S.); (W.L.d.C.B.); (J.F.H.)
| | - José Francisco Höfling
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas (FOP/UNICAMP), 901 Limeira Ave, Piracicaba 13414-903, SP, Brazil; (M.C.O.); (T.A.d.S.); (J.J.d.S.); (W.L.d.C.B.); (J.F.H.)
| | - Cristina Paiva de Sousa
- Department of Morphology and Pathology & Biotechnology Graduate Program (PPGBiotec), Center for Biological and Health Sciences (CCBS), Federal University of São Carlos (UFSCar), Km 235 Washington Luís Road, São Carlos 13565-905, SP, Brazil;
| |
Collapse
|
3
|
Lerdsittikul V, Apiratwarrasakul S, Atithep T, Withatanung P, Indrawattana N, Pumirat P, Chaiwattanarungruengpaisan S, Thongdee M. Isolation and characterisation of a novel Silviavirus bacteriophage promising antimicrobial agent against methicillin-resistant Staphylococcus aureus infections. Sci Rep 2024; 14:9251. [PMID: 38649443 PMCID: PMC11035597 DOI: 10.1038/s41598-024-59903-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
The increasing prevalence of methicillin-resistant Staphylococcus aureus (MRSA) emphasises the urgent need for novel antimicrobial agents as alternatives to antibiotics. Bacteriophage therapy is one of the most promising antimicrobial strategies. Here, we isolated and comprehensively characterized a novel Staphylococcus phage, vB_SauM_VL10 (VL10), from urban sewage. The VL10 genome displays 141,746 bp of linear double-stranded DNA, containing 193 open reading frames and lacking tRNA, virulence, or antibiotic resistance genes. Phylogenetic analysis categorizes VL10 as a novel species within the Silviavirus genus, Twortvirinae subfamily. VL10 exhibits lytic behaviour characterized by efficient adsorption, a short latent period, and substantial burst size, with environmental stability. It demonstrates lytic activity against 79.06% of tested S. aureus strains, highlighting its species specificity. Additionally, VL10 effectively targets MRSA biofilms, reducing biomass and viable cells. In MRSA-infected G. mellonella larvae, VL10 enhances survival rates, supporting its potential for phage therapy applications. Moreover, the emergence of VL10-resistant S. aureus strains associated with fitness trade-offs, including reduced growth, biofilm formation, and virulence. Altogether, these findings emphasize VL10 as a promising candidate for developing therapeutic agents against MRSA infections, providing insights into phage biology and resistance dynamics.
Collapse
Affiliation(s)
- Varintip Lerdsittikul
- Veterinary Diagnostic Center, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand.
| | - Sukanya Apiratwarrasakul
- Veterinary Diagnostic Center, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Thassanant Atithep
- Frontier Research Center, Vidyasirimedhi Institute of Science and Technology, Rayong, Thailand
| | - Patoo Withatanung
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nitaya Indrawattana
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research and Excellence in Allergy and Immunology (SiALL), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pornpan Pumirat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Somjit Chaiwattanarungruengpaisan
- The Monitoring Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Metawee Thongdee
- The Monitoring Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
4
|
Ghosh S, Sen S, Jash M, Ghosh S, Jana A, Roy R, Mukherjee N, Mukherjee D, Sarkar J, Ghosh S. Synergistic Augmentation of Beta-Lactams: Exploring Quinoline-Derived Amphipathic Small Molecules as Antimicrobial Potentiators against Methicillin-Resistant Staphylococcus aureus. ACS Infect Dis 2024; 10:1267-1285. [PMID: 38442370 DOI: 10.1021/acsinfecdis.3c00696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The escalation of bacterial resistance against existing therapeutic antimicrobials has reached a critical peak, leading to the rapid emergence of multidrug-resistant strains. Stringent pathways in novel drug discovery hinder our progress in this survival race. A promising approach to combat emerging antibiotic resistance involves enhancing conventional ineffective antimicrobials using low-toxicity small molecule adjuvants. Recent research interest lies in weak membrane-perturbing agents with unique cyclic hydrophobic components, addressing a significant gap in antimicrobial drug exploration. Our study demonstrates that quinoline-based amphipathic small molecules, SG-B-52 and SG-B-22, significantly reduce MICs of selected beta-lactam antibiotics (ampicillin and amoxicillin) against lethal methicillin-resistant Staphylococcus aureus (MRSA). Mechanistically, membrane perturbation, depolarization, and ROS generation drive cellular lysis and death. These molecules display minimal in vitro and in vivo toxicity, showcased through hemolysis assays, cell cytotoxicity analysis, and studies on albino Wistar rats. SG-B-52 exhibits impressive biofilm-clearing abilities against MRSA biofilms, proposing a strategy to enhance beta-lactam antibiosis and encouraging the development of potent antimicrobial potentiators.
Collapse
Affiliation(s)
- Surojit Ghosh
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Samya Sen
- iHUB Drishti Foundation, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Moumita Jash
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Satyajit Ghosh
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Aniket Jana
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Rajsekhar Roy
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Nabanita Mukherjee
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Dipro Mukherjee
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Jayita Sarkar
- Centre for Research and Development of Scientific Instruments (CRDSI), Indian Institute of Technology, Jodhpur, Rajasthan, 342030, India
| | - Surajit Ghosh
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
- iHUB Drishti Foundation, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| |
Collapse
|
5
|
Furuya H, Ogura K, Takemoto N, Watanabe S, Yamazaki A, Ogai K, Sugama J, Okamoto S. A multilocus sequence typing method of Staphylococcus aureus DNAs in a sample from human skin. Microbiol Immunol 2023; 67:438-446. [PMID: 37574717 DOI: 10.1111/1348-0421.13094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/03/2023] [Accepted: 07/21/2023] [Indexed: 08/15/2023]
Abstract
The skin and mucous membranes are the primary sites of Staphylococcus aureus colonization, particularly those of health care personnel and patients in long-term care centers. We found that S. aureus colonized with a higher abundance ratio on skins which had recovered from pressure injury (PI) than on normal skins in our earlier research on the skin microbiota of bedridden patients. Multilocus sequence typing (MLST) is a useful tool for typing S. aureus isolated from clinical specimens. However, the MLST approach cannot be used in microbiota DNA owing to the contamination from other bacteria species. In this study, we developed a multiplex-nested PCR method to determine S. aureus MLST in samples collected from human skins. The seven pairs of forward and reverse primers were designed in the upstream and downstream regions, which were conserved specifically in S. aureus. The first amplifications of the seven pairs were conducted in a multiplex assay. The samples were diluted and applied to conventional PCR for MLST. We confirmed that the method amplified the seven allele sequences of S. aureus specifically in the presence of untargeted DNAs from human and other skin commensal bacteria. Using this assay, we succeeded in typing sequence types (STs) of S. aureus in the DNA samples derived from the skins healed from PI. Peaks obtained by Sanger sequencing showed that each sample contained one ST, which were mainly categorized into clonal complex 1 (CC1) or CC5. We propose that this culture-free approach may be used in detecting S. aureus in clinical specimens without isolation.
Collapse
Affiliation(s)
- Hiroka Furuya
- Department of Clinical Laboratory Science, Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Kohei Ogura
- Advanced Health Care Science Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Gokasho, Japan
| | - Norihiko Takemoto
- Pathogenic Microbe Laboratory, Research Institute, National Center for Global Health and Medicine, Tokyo, Shinjuku-ku, Japan
| | - Shinya Watanabe
- Division of Bacteriology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, Shimotsuke-shi, Tochigi, Japan
| | - Ayaka Yamazaki
- Advanced Health Care Science Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Kazuhiro Ogai
- AI Hospital/Macro Signal Dynamics Research and Development Center, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Junko Sugama
- Research Center for Implementation Nursing Science Initiative, Fujita Health University, Toyoake, Aichi, Japan
| | - Shigefumi Okamoto
- Department of Clinical Laboratory Science, Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
- Advanced Health Care Science Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
6
|
Laurence Yehouenou C, Bogaerts B, Vanneste K, De Keersmaecker SCJ, Roosens NHC, Kpangon AA, Affolabi D, Simon A, Dossou FM, Dalleur O. Whole-Genome Sequencing-Based Screening of MRSA in Patients and Healthcare Workers in Public Hospitals in Benin. Microorganisms 2023; 11:1954. [PMID: 37630513 PMCID: PMC10459514 DOI: 10.3390/microorganisms11081954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 08/27/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) constitutes a serious public health concern, with a considerable impact on patients' health, and substantial healthcare costs. In this study, patients and healthcare workers (HCWs) from six public hospitals in Benin were screened for MRSA. Strains were identified as MRSA using conventional microbiological methods in Benin, and confirmed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in Belgium. Whole-genome sequencing (WGS) was used on the confirmed MRSA isolates, to characterize their genomic content and study their relatedness. Amongst the 305 isolates (304 wound swabs and 61 nasal swabs) that were collected from patients and HCWs, we detected 32 and 15 cases of MRSA, respectively. From this collection, 27 high-quality WGS datasets were obtained, which carried numerous genes and mutations associated with antimicrobial resistance. The mecA gene was detected in all the sequenced isolates. These isolates were assigned to five sequence types (STs), with ST8 (55.56%, n = 15/27), ST152 (18.52%, n = 5/27), and ST121 (18.52%, n = 5/27) being the most common. These 27 isolates carried multiple virulence genes, including the genes encoding the Panton-Valentine leukocidin toxin (48.15%, n = 13/27), and the tst gene (29.63%, n = 8/27), associated with toxic shock syndrome. This study highlights the need to implement a multimodal strategy for reducing the risk of the cross-transmission of MRSA in hospitals.
Collapse
Affiliation(s)
- Carine Laurence Yehouenou
- Clinical Pharmacy Research Group (CLIP), Louvain Drug Research Institute (LDRI), Université Catholique de Louvain UCLouvain, Avenue Mounier 73, 1200 Brussels, Belgium;
- Laboratoire de Référence des Mycobactéries (LRM), Cotonou BP 817, Benin;
- Faculté des Sciences de la Santé (FSS), Université d’Abomey Calavi (UAC), Cotonou 01 BP 188, Benin
| | - Bert Bogaerts
- Transversal Activities in Applied Genomics, Sciensano, Juliette Wytsmanstraat 14, 1050 Brussels, Belgium; (B.B.); (K.V.); (S.C.J.D.K.); (N.H.C.R.)
| | - Kevin Vanneste
- Transversal Activities in Applied Genomics, Sciensano, Juliette Wytsmanstraat 14, 1050 Brussels, Belgium; (B.B.); (K.V.); (S.C.J.D.K.); (N.H.C.R.)
| | - Sigrid C. J. De Keersmaecker
- Transversal Activities in Applied Genomics, Sciensano, Juliette Wytsmanstraat 14, 1050 Brussels, Belgium; (B.B.); (K.V.); (S.C.J.D.K.); (N.H.C.R.)
| | - Nancy H. C. Roosens
- Transversal Activities in Applied Genomics, Sciensano, Juliette Wytsmanstraat 14, 1050 Brussels, Belgium; (B.B.); (K.V.); (S.C.J.D.K.); (N.H.C.R.)
| | - Arsène A. Kpangon
- Ecole Nationale des Techniciens Supérieurs en Santé Publique et Surveillance Épidémiologique, Université de Parakou, Parakou, Benin;
| | - Dissou Affolabi
- Laboratoire de Référence des Mycobactéries (LRM), Cotonou BP 817, Benin;
- Faculté des Sciences de la Santé (FSS), Université d’Abomey Calavi (UAC), Cotonou 01 BP 188, Benin
- Centre National Hospitalier et Universitaire Hubert Koutoukou Maga (CNHU-HKM), Cotonou BP 386, Benin
| | - Anne Simon
- Centres Hospitaliers Jolimont, Prévention et Contrôle des Infections, Groupe Jolimont Asbl, Rue Ferrer 159, 7100 Haine-Saint-Paul, Belgium;
| | - Francis Moise Dossou
- Department of Surgery and Surgical Specialties, Faculty of Health Sciences, Campus Universitaire, Champs de Foire, Cotonou 01 BP 118, Benin;
| | - Olivia Dalleur
- Clinical Pharmacy Research Group (CLIP), Louvain Drug Research Institute (LDRI), Université Catholique de Louvain UCLouvain, Avenue Mounier 73, 1200 Brussels, Belgium;
- Pharmacy, Clinique Universitaire Saint-Luc, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 10, 1200 Brussels, Belgium
| |
Collapse
|
7
|
Li Y, Tang Y, Qiao Z, Jiang Z, Wang Z, Xu H, Jiao X, Li Q. Prevalence and molecular characteristics of community-associated methicillin-resistant Staphylococcus aureus in the respiratory tracts of Chinese adults with community-acquired pneumonia. J Infect Public Health 2023; 16:713-718. [PMID: 36940498 DOI: 10.1016/j.jiph.2023.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/20/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023] Open
Abstract
BACKGROUND Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) is an important pathogen causing healthcare-associated infections. In recent years, an increasing number of CA-MRSA clones have emerged and rapidly spread in the community and hospital settings in China. OBJECTIVES To investigate the molecular epidemiology and resistance of CA-MRSA in the respiratory tracts of Chinese adults with community-acquired pneumonia (CAP). METHODS A total of 243 sputum samples were collected from adult patients with CAP at the Nantong Hospital in China between 2018 and 2021. S. aureus was identified using PCR, and its susceptibility to 14 antimicrobials was tested using the broth dilution method. Genomic characterization of respiratory CA-MRSA and our previously collected intestinal CA-MRSA isolates was performed using whole-genome sequencing, and the evolutionary relationships of these isolates were assessed using phylogenetic analysis. RESULTS The CA-MRSA colonization rate among adults with CAP in China was 7.8 % (19/243). Antimicrobial resistance analysis revealed that the proportion of multidrug-resistant respiratory CA-MRSA isolates (100 %) was higher than that of intestinal CA-MRSA isolates (6.3 %). Among the 35 CA-MRSA isolates, 10 MLST types were identified and clustered into five clone complexes (CCs). CC5 (48.6 %) and CC88 (20 %) were predominant CA-MRSA clones. Notably, the CC5 clone ST764/ST6292-MRSA-II-t002 was identified as the major lineage causing respiratory tract infections in Chinese adults with CAP. CONCLUSIONS The prevalence of CA-MRSA among Chinese adults with CAP is high and often involves ST764/ST6292-MRSA-II-t002 as the causal pathogen.
Collapse
Affiliation(s)
- Yang Li
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, China
| | - Yuanyue Tang
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, China
| | - Zhuang Qiao
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, China
| | - Zhongyi Jiang
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, China
| | - Zhenyu Wang
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, China
| | - Haiyan Xu
- Nantong Center for Disease Control and Prevention, Nantong, China.
| | - Xinan Jiao
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, China.
| | - Qiuchun Li
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, China.
| |
Collapse
|
8
|
Diversity and Dissemination of Methicillin-Resistant Staphylococcus aureus (MRSA) Genotypes in Southeast Asia. Trop Med Infect Dis 2022; 7:tropicalmed7120438. [PMID: 36548693 PMCID: PMC9781663 DOI: 10.3390/tropicalmed7120438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a successful pathogen that has achieved global dissemination, with high prevalence rates in Southeast Asia. A huge diversity of clones has been reported in this region, with MRSA ST239 being the most successful lineage. Nonetheless, description of MRSA genotypes circulating in the Southeast Asia region has, until now, remained poorly compiled. In this review, we aim to provide a better understanding of the molecular epidemiology and distribution of MRSA clones in 11 Southeast Asian countries: Singapore, Malaysia, Thailand, Vietnam, Cambodia, Lao People's Democratic Republic (PDR), Myanmar, Philippines, Indonesia, Brunei Darussalam, and Timor-Leste. Notably, while archaic multidrug-resistant hospital-associated (HA) MRSAs, such as the ST239-III and ST241-III, were prominent in the region during earlier observations, these were then largely replaced by the more antibiotic-susceptible community-acquired (CA) MRSAs, such as ST22-IV and PVL-positive ST30-IV, in recent years after the turn of the century. Nonetheless, reports of livestock-associated (LA) MRSAs remain few in the region.
Collapse
|
9
|
Zhang H, Tian L, Chen T, Chen W, Ge Y, Bi J, Fang Z, Chen M. Prevalence and WGS-based characteristics of MRSA isolates in hospitals in Shanghai, China. Front Microbiol 2022; 13:1002691. [PMID: 36406454 PMCID: PMC9668878 DOI: 10.3389/fmicb.2022.1002691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/15/2022] [Indexed: 11/02/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) isolates remain a serious threat to global health despite a decrease in MRSA infections since 2005. MRSA isolates exhibit great diversity worldwide, and their lineages show geographic variation. In this study, we used whole genome sequencing (WGS) to analyze antibiotic resistance genes and virulence genes, spa, staphylococcal cassette chromosome mec, sequence types (STs), and core genome multilocus sequence typing (cgMLST) of MRSA isolates from patients and environmental surface in hospitals in China to determine their prevalence and molecular traits. The highest number of infections by MRSA isolates was observed in patients aged ≥60 years (69.8%, P < 0.05). We identified a total of 19 STs from 162 MRSA isolates from patients. A significant increase was observed in the incidence of ST764-t002-II MRSA infection, which is replacing ST5-t002-II MRSA as the predominant ST. Similarly, isolates from environmental surface were predominantly ST764-t002-II (47%). Notably, most ST764 isolates (97.7%) carried seb, but not arginine catabolic mobile element (ACME), which differed from ST764 isolates in Japan and Thailand. The potential danger of spreading requires rigorous surveillance of emerging ST764 MRSA isolates. We also found higher resistance to seven antimicrobials [OXA, cefoxitin (FOX), ERY, CFZ, ciprofloxacin (CIP), levofloxacin (LEV), and moxifloxacin (MXF)]. Resistance to gentamicin (38.3%), tetracycline (55.9%), and minocycline (41.5%) were also common. Phenotypic resistance to antimicrobials was associated with resistance genes to its content, and cgMLST clustering suggested a strong link between these strains. Overall, our findings revealed the prevalence and molecular characteristics of MRSA isolates in Shanghai, China, providing a theoretical reference for preventing and controlling clonal transmission of MRSA isolates in hospitals in China.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Min Chen
- Department for Pathogen Identification, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| |
Collapse
|