1
|
Gupta RK, Sraw PK, Kang JS, Kaur J, Sharma V, Pathania N, Kalia A, Al-Ansari N, Alataway A, Dewidar AZ, Mattar MA. Interactive effects of long-term management of crop residue and phosphorus fertilization on wheat productivity and soil health in the rice-wheat. Sci Rep 2024; 14:1399. [PMID: 38228839 PMCID: PMC10791631 DOI: 10.1038/s41598-024-51399-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024] Open
Abstract
In the context of degradation of soil health, environmental pollution, and yield stagnation in the rice-wheat system in the Indo-Gangetic Plains of South Asia, an experiment was established in split plot design to assess the long-term effect of crop residue management on productivity and phosphorus requirement of wheat in rice-wheat system. The experiment comprised of six crop residue management practices as the main treatment factor with three levels (0, 30 and 60 kg P2O5 ha-1) of phosphorus fertilizer as sub-treatments. Significant improvement in soil aggregation, bulk density, and infiltration rate was observed under residue management (retention/incorporation) treatments compared to residue removal or residue burning. Soil organic carbon (SOC), available nutrient content (N, P, and K), microbial count, and enzyme activities were also significantly higher in conservation tillage and residue-treated plots than without residue/burning treatments. The residue derived from both crops when was either retained/incorporated improved the soil organic carbon (0.80%) and resulted in a significant increase in SOC (73.9%) in the topsoil layer as compared to the conventional practice. The mean effect studies revealed that crop residue management practices and phosphorus levels significantly influenced wheat yield attributes and productivity. The higher grain yield of wheat was recorded in two treatments, i.e. the basal application of 60 kg P2O5 ha-1 without residue incorporation and the other with half the P-fertilizer (30 kg P2O5 ha-1) with rice residue only. The grain yield of wheat where the rice and wheat residue were either retained/incorporated without phosphorus application was at par with 30 and 60 kg P2O5ha-1. Phosphorus levels also significantly affected wheat productivity and available P content in the soil. Therefore, results suggested that crop residue retention following the conservation tillage approach improved the yield of wheat cultivated in the rice-wheat cropping system.
Collapse
Affiliation(s)
- Rajeev Kumar Gupta
- Department of Soil Science, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Paramjit Kaur Sraw
- Department of Agronomy, Punjab Agricultural University, Ludhiana, 141004, India
| | - Jasjit Singh Kang
- Department of Agronomy, Punjab Agricultural University, Ludhiana, 141004, India
| | - Jagroop Kaur
- Department of Agronomy, Punjab Agricultural University, Ludhiana, 141004, India
| | - Vivek Sharma
- Department of Soil Science, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Neemisha Pathania
- Department of Soil Science, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Anu Kalia
- Department of Soil Science, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Nadhir Al-Ansari
- Department of Civil, Environmental, and Natural Resources Engineering, Lulea University of Technology, 97187, Lulea, Sweden.
| | - Abed Alataway
- Prince Sultan Bin Abdulaziz International Prize for Water Chair, Prince Sultan Institute for Environmental, Water and Desert Research, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Ahmed Z Dewidar
- Prince Sultan Bin Abdulaziz International Prize for Water Chair, Prince Sultan Institute for Environmental, Water and Desert Research, King Saud University, 11451, Riyadh, Saudi Arabia
- Department of Agricultural Engineering, College of Food and Agriculture Sciences, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Mohamed A Mattar
- Prince Sultan Bin Abdulaziz International Prize for Water Chair, Prince Sultan Institute for Environmental, Water and Desert Research, King Saud University, 11451, Riyadh, Saudi Arabia.
- Department of Agricultural Engineering, College of Food and Agriculture Sciences, King Saud University, 11451, Riyadh, Saudi Arabia.
- Agricultural Research Centre, Agricultural Engineering Research Institute (AEnRI), Giza, 12618, Egypt.
| |
Collapse
|
2
|
Chakraborty R, Purakayastha TJ, Pendall E, Dey S, Jain N, Kumar S. Nitrification and urease inhibitors mitigate global warming potential and ammonia volatilization from urea in rice-wheat system in India: A field to lab experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165479. [PMID: 37459989 DOI: 10.1016/j.scitotenv.2023.165479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/02/2023] [Accepted: 07/09/2023] [Indexed: 07/25/2023]
Abstract
The efficacy of alternative nitrogenous fertilizers for mitigating greenhouse gas and ammonia emissions from a rice-wheat cropping system in northern India was addressed in a laboratory incubation experiment using soil from a 10-year residue management field experiment (crop residue removal, CRR, vs. incorporation, CRI). Neem coated urea (NCU), standard urea (U), urea ammonium sulfate (UAS), and two alternative fertilizers, urea + urease inhibitor NBPT (UUI) and urea + urease inhibitor NBPT + nitrification inhibitor DMPSA (UUINI) were compared to non-fertilized controls for four weeks in incubation under anaerobic condition. Effects of fertilizers on global warming potential (GWP) and ammonia volatilization were dependent on residue treatment. Relative to standard urea, NCU reduced GWP by 11 % in CRI but not significantly in CRR; conversely, UAS reduced GWP by 12 % in CRR but not significantly in CRI. UUI and UUINI reduced GWP in both residue treatments and were more effective in CRI (21 % and 26 %) than CRR (15 % and 14 %). Relative to standard urea, NCU increased ammonia volatilization by 8 % in CRI but not significantly in CRR. Ammonia volatilization was reduced most strongly by UUI (40 % in CRI and 37 % in CRR); it was reduced 28-29 % by UUINI and 12-15 % by UAS. Overall, the urease inhibitor, alone and in combination with the nitrification inhibitor, was more effective in mitigating greenhouse gas and ammonia emissions than NCU. However, these products need to be tested in field settings to validate findings from the controlled laboratory experiment.
Collapse
Affiliation(s)
- Ranabir Chakraborty
- Division of Soil Science and Agricultural Chemistry, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi 110012, India; Indian Council of Agricultural Research-National Bureau of Soil Survey and Land Use Planning, Regional Centre, Bangalore 560012, India
| | - Tapan Jyoti Purakayastha
- Division of Soil Science and Agricultural Chemistry, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi 110012, India.
| | - Elise Pendall
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Saptaparnee Dey
- Division of Soil Science and Agricultural Chemistry, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Niveta Jain
- Division of Environment Science, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Sarvendra Kumar
- Division of Soil Science and Agricultural Chemistry, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi 110012, India
| |
Collapse
|
3
|
Romano I, Bodenhausen N, Basch G, Soares M, Faist H, Trognitz F, Sessitsch A, Doubell M, Declerck S, Symanczik S. Impact of conservation tillage on wheat performance and its microbiome. FRONTIERS IN PLANT SCIENCE 2023; 14:1211758. [PMID: 37670872 PMCID: PMC10475739 DOI: 10.3389/fpls.2023.1211758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/25/2023] [Indexed: 09/07/2023]
Abstract
Winter wheat is an important cereal consumed worldwide. However, current management practices involving chemical fertilizers, irrigation, and intensive tillage may have negative impacts on the environment. Conservation agriculture is often presented as a sustainable alternative to maintain wheat production, favoring the beneficial microbiome. Here, we evaluated the impact of different water regimes (rainfed and irrigated), fertilization levels (half and full fertilization), and tillage practices (occasional tillage and no-tillage) on wheat performance, microbial activity, and rhizosphere- and root-associated microbial communities of four winter wheat genotypes (Antequera, Allez-y, Apache, and Cellule) grown in a field experiment. Wheat performance (i.e., yield, plant nitrogen concentrations, and total nitrogen uptake) was mainly affected by irrigation, fertilization, and genotype, whereas microbial activity (i.e., protease and alkaline phosphatase activities) was affected by irrigation. Amplicon sequencing data revealed that habitat (rhizosphere vs. root) was the main factor shaping microbial communities and confirmed that the selection of endophytic microbial communities takes place thanks to specific plant-microbiome interactions. Among the experimental factors applied, the interaction of irrigation and tillage influenced rhizosphere- and root-associated microbiomes. The findings presented in this work make it possible to link agricultural practices to microbial communities, paving the way for better monitoring of these microorganisms in the context of agroecosystem sustainability.
Collapse
Affiliation(s)
- Ida Romano
- Department of Agricultural Sciences, Division of Microbiology, University of Naples Federico II, Naples, Italy
| | - Natacha Bodenhausen
- Department of Soil Sciences, Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
| | - Gottlieb Basch
- MED – Mediterranean Institute for Agriculture, Environment and Development, University of Évora, Évora, Portugal
| | - Miguel Soares
- MED – Mediterranean Institute for Agriculture, Environment and Development, University of Évora, Évora, Portugal
| | - Hanna Faist
- AIT Austrian Institute of Technology, Tulln, Austria
| | | | | | - Marcé Doubell
- Mycology, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Stéphane Declerck
- Mycology, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Sarah Symanczik
- Department of Soil Sciences, Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
| |
Collapse
|